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ABSTRACT

Random walk is an explainable approach for modeling natural processes at the molecular level. The random permutation set theory (RPST)
serves as a framework for uncertainty reasoning, extending the applicability of Dempster–Shafer theory. Recent explorations indicate a
promising link between RPST and random walk. In this study, we conduct an analysis and construct a random walk model based on the
properties of RPST, with Monte Carlo simulations of such random walk. Our findings reveal that the random walk generated through RPST
exhibits characteristics similar to those of a Gaussian random walk and can be transformed into a Wiener process through a specific limiting
scaling procedure. This investigation establishes a novel connection between RPST and random walk theory, thereby not only expanding
the applicability of RPST but also demonstrating the potential for combining the strengths of both approaches to improve problem-solving
abilities.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0220154

Random walk models simulate natural processes by modeling
step-by-step movements as random variables. The random per-
mutation set theory (RPST) is an uncertainty reasoning frame-
work extending evidence theory with ordered information. This
study reveals a promising connection between RPST and ran-
dom walks. By constructing a random walk model based on RPST
properties and analyzing it through simulations, the key finding
is that the RPST-generated random walk exhibits characteristics
similar to a Gaussian random walk and can be transformed into
a Wiener process (Brownian motion)—through scaling. Specif-
ically, the RPST walk displays normally distributed step sizes,
variance growing quadratically with steps, and convergence to
Wiener processes in the limit. This novel link between RPST and
stochastic processes implies possibilities for improved function-
alities in various applications utilizing both methods.

I. INTRODUCTION

Random walk models have been used to simulate various natu-
ral processes. These models are particularly useful for understanding
molecular-level dynamics (Ansari-Rad et al., 2012; Kessing et al.,
2022; and Thompson et al., 2022), complex networks (Wang et al.,

2021), and so on. Correlated walks are specialized category of ran-
dom walks. In correlated walks, the moving particles have a memory
of their previous steps. This memory affects the direction of the next
step, making the order of the steps important (Tojo and Argyrakis,
1996).

The Dempster–Shafer evidence theory (DSET), also known as
evidence theory, is a framework used for reasoning under uncer-
tainty (Dempster, 1967 and Shafer, 1976). In contrast to probability
theory, DSET utilizes mass functions to assign beliefs to subsets of a
power set, rather than to individual outcomes in the sample space,
allowing for a more flexible approach to defining belief assignments.
Moreover, DSET has been extended to complex evidence theory
(Xiao et al., 2023 and Xiao and Pedrycz, 2023) and quantum evi-
dence theory (Xiao, 2023a; 2023b), which are applied to various
fields, such as time series analysis (Cui et al., 2022; Qiang et al.,
2022; Contreras-Reyes and Kharazmi, 2023; Kharazmi and Contr-
eras-Reyes, 2024; and Zhang and Xiao, 2024), quantum Dempster’s
rule of combination (He and Xiao, 2024), software risk assessment
(Chen and Deng, 2024), and so on. However, DSET struggles to han-
dle ordered information in certain real-world problems. To address
this limitation, the random permutation set theory (RPST) is pro-
posed (Deng, 2022). By introducing the concept of permutation
events, RPST effectively considers the order of elements and expands
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the power set and mass function into the permutation event space
(PES) and permutation mass function (PMF). Similar to Shannon
entropy (Shannon, 1948) in probability and Deng entropy (Zhao et
al., 2024) in DSET, the RPS entropy is proposed by Chen and Deng
(2023) to quantify the uncertainty in RPST. The orthogonal sum in
DSET is further extended in RPST by considering the order of the
elements in evidence (Wang et al., 2024).

One research area of focus in DSET and RPST is its physi-
cal implications. For instance, in DSET, Li and Xiao (2023) derived
normal distribution from maximum Deng entropy, and Zhao et al.
(2024) found intriguing linearity in Deng entropy. In RPST, Zhan et
al. (2024) established a bridge between thermodynamic entropy and
information entropy from the perspective of measurement, delved
into the PMF condition for maximum entropy in RPST. Zhao et al.
(2023) further demonstrated that the information dimension associ-
ated with this PMF condition is 2, similar to the fractal dimension of
Brownian motion. Moreover, the mean square distance in a Brown-
ian motion denoted as r̄2 is proportional to the time elapsed. While
in our previous research, it is showed that the limit form of max-
imum RPS entropy is e · (n!)2, exhibiting similarities to r̄2 (Zhou
et al., 2024). These collective discoveries hint at a potential con-
nection between RPST and Brownian motion, or random walk in
mathematics.

In this paper, we conduct an in-depth analysis of RPST and
construct random variables based on its properties. We then gen-
erate a random walk using these random variables. Finally, we
demonstrate that this type of random walk shares similarities with a
Gaussian random walk and can be converted into a Wiener process
through scaling.

In general, we builds a bridge between RPST and random
walk theory, revealing their potential applications in modeling com-
plex real-world phenomena. For example, in fields such as financial
modeling, where asset prices exhibit random walk behavior, the
introduction of RPST could enhance the accuracy of predictions by
incorporating the order of events. Similarly, in molecular dynam-
ics, where the paths of particles are critical, the connection between
RPST and random walks could lead to better simulations of molecu-
lar behavior. This connection not only broadens the utility of RPST
but also enhances the problem-solving capabilities of random walk
models, particularly in fields requiring precise handling of ordered
or sequential data. By integrating the strengths of both methodolo-
gies, researchers can develop more robust models that are better
suited to capture the complexity of these systems.

The article is structured as follows. Section II introduces some
key concepts related to this work. In Sec. III, the construction
of RPST-generated random walk is presented. Finally, this article
is summarized in Sec. IV. The proof of this work is attached in
Appendix A.

II. PRELIMINARIES

Some key concepts about this work are introduced in this
section.

A. Sample space and mass function

Definition 1 (Sample space). A sample space � is a
mathematical set that contains all possible base events Ei, and the

cardinality of sample space is denoted as | · |. The power set of � is
marked as 2�.

� = {E1, E2, E3, . . . , En} , |�| = n. (1)

Definition 2 (Mass function). A mass function M (·) is a
function that assigns a belief to each subset of a sample space �,
M : 2� → [0, 1], with the following constraints:

∑

i

M (i) = 1, M (i) ≥ 0, M (∅) = 0. (2)

B. Random permutation set theory

By introducing ordered information, the random permutation
set theory (RPST) successfully extends the scope of evidence theory.
Some fundamental concepts of RPST are introduced below.

1. Random permutation set

Definition 3 (Permutation event space, PES). The permuta-
tion event space (PES) is a set that contains all possible permutations
of base events of �,

PES(�) =
{

pij|i = 0, 1, . . . , n; j = 1, 2, . . . , P(n, i)
}

= {∅, [E1], [E2], . . . , [En], [E1, E2], [E2, E1], . . . ,

[En−1, En], [En, En−1], . . . ,

[E1, E2, . . . , En], [En, En−1, . . . , E1]} , (3)

where P(n, i) = n!/(n − i)! is the i-permutation of n.
Definition 4 (Permutation mass function, PMF). A permu-

tation mass function (PMF) M is a mapping M : PES(�) → [0, 1],
with constraints

M(∅) = 0,
∑

p∈PES(�)

M(p) = 1. (4)

The random permutation set (RPS) consists of a permutation
event from PES(�) and its associated permutation mass function
(PMF) M: RPS(�) = {A, M(A)|A ∈ PES(�)}.

2. RPS entropy

Similar to entropy methods as uncertainty measure in evidence
theory, RPS entropy has been proposed recently (Chen and Deng,
2023). What is more, the maximum RPS entropy and its limit form
are also introduced and proved (Zhan et al., 2024 and Zhou et al.,
2024).

Definition 5 (RPS entropy). The RPS entropy of a RPS
RPS(�) = {A, M(A)} is defined as

HRPS(M) = −
∑

A∈PES(�)

M(A) log (M(A)/(F(|A|) − 1), (5)

where |A| is the cardinality of permutation event A, and F(i)

= ∑i
j=0 P(i, j).

RPS entropy is fully compatible with Deng entropy (Zhao
et al., 2024) as used in evidence theory and Shannon entropy
(Shannon, 1948) in probability theory. Such uncertainty mea-
sures have been provided insights for real-world applications
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(Huang et al., 2023a; 2023b; Xiao et al., 2023; and Deng et al., 2024)
and other kinds of uncertainty measures like information dimen-
sion (Zhao et al., 2023 and Ortiz-Vilchis et al., 2024), information
distance (Xiao and Pedrycz, 2023), negation (Kharazmi and Contr-
eras-Reyes, 2023 and Kharazmi et al., 2023), and so on (Kharazmi et
al., 2023 and Kharazmi and Contreras-Reyes, 2024).

Zhan et al. (2024) derived and proved the following PMF
condition of maximum RPS entropy:

M(A) = F(|A|) − 1
∑n

i=1[P(n, i)(F(i) − 1)]
. (6)

The corresponding maximum RPS entropy for such PMF con-
dition is then expressed as

Hmax−RPS = log

(

n
∑

i=1

[P(n, i)(F(i) − 1)]

)

. (7)

The limit form of maximum RPS entropy can be simplified as
(Zhou et al., 2024)

Hmax−RPS ≈ e · (n!)2. (8)

This elegant result offers valuable insights into the physical sig-
nificance of RPST. In a study of Brownian motion, Einstein (1956)
demonstrated that the mean square displacement is directly propor-

tional to the elapsed time, expressed as r̄2 ∝ t. This prompts us to
investigate a potential relationship between (n!)2 and r̄2. Further-
more, Zhao et al. (2023) identified that the information dimension
of the PMF associated with maximum RPS entropy is 2, which
aligns with the fractal dimension of Brownian motion. Collectively,
these findings suggest a possible link between RPST and Brownian
motion, or random walk theory.

C. Random walk

How to model and measure the uncertainty and dynamics of
the system Wang et al. (2017; 2018; 2020; 2022) have attracted much
attention. Random walk is a fundamental topic in probability the-
ory. It is a type of stochastic process, which is a sequence of random
variables that evolve over time. Random walk is formed by the suc-
cessive summation of independent and identically distributed (i.i.d.)
random variables (Lawler and Limic, 2010).

1. General random walk

Definition 6 (General random walk). For ∀t ∈ N
+ = {1, 2,

3 . . .}, let St ∈ R
d, given a proper probability distribution P : R

d

→ (0, 1] and a group of i.i.d. random variables
{

Xt|Xt ∈ R
d, t ∈ N

+},
the general random walk Sn with step size distribution P can be
considered the time-homogeneous Markov chain, defined by a
summation of {Xt},

Sn = S0 + X1 + X2 + . . . + Xn, (9)

where S0 ∈ R
d is the starting point.

One well-studied variant is the Gaussian random walk, which
has a step size distribution of normal distribution N(0, σ 2).

2. Wiener process

The Wiener process, also known as Brownian motion, is a fun-
damental concept in probability theory and stochastic processes. It
represents the limiting behavior of a one-dimensional random walk
as the step size approaches zero and the number of steps approaches
infinity.

Definition 7 (Wiener process). For ∀n ∈ Z+, W(t) is a
Wiener process if

W(t) = lim
n→∞

Wn(t) = 1√
n

∑

1≤i≤bntc
ξi, t ∈ [0, 1], ξ ∼ N(0, 1). (10)

A Wiener process {W(t), t > 0} has the following properties:

• W(0) = 0;
• for 0 ≤ s < t, the increments W(t) − W(s) ∼ N(0, t − s);
• For any non-overlapping interval [si, ti], the group of random

variables W(t) − W(s) are independent of each other;
• W(t) is almost surely continuous in t.

Those properties will be analyzed in our proposed stochastic pro-
cess.

ALGORITHM 1.Random Variable Generator.
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FIG. 1. Visualization of random variables generation with n ranging from 1 to 12 in 20 000 simulations. Each point on the graph represents a possible random variable, with
the color indicating the frequency of occurrence.

III. EXPLORE RANDOM WALK IN RANDOM

PERMUTATION SET

In this section, we will give an in-depth exploration of ran-
dom walk in random permutation set theory. Now let us review the
motivation discussed earlier: the RPST brings order information of
events to expand evidence theory, and the order information can be
viewed as time sequence information since time has fixed order and
flows in one direction. The term “random” inspired us to find the
connection between RPST and random walks in stochastic process.

When generating a random walk based on RPST, it is impor-
tant to consider the order information present in RPST. For conve-
nience, we use list [a1, a2, . . . , an] to express order information and
simulate two-dimensional random walk. First, the random variable
should be defined.

One situation where the ordered information is important is
the matrix multiplication, because matrix multiplication does not
hold commutative property, i.e., AB = BA for most of the matrix
A, B. This inspired us to use matrix to generate a random variable.

Given a permutation sequence, PerSn×1 = (a1, a2, . . . , an)
> and

a arbitrary vector EV0 = (x, y)>, we want to output a random variable
vector EVi = (Vx, Vy)

>top. This can be done by the following com-
putation. First, we randomly generated some invertible matrices MN

= (M1, M2, . . . , Mi, . . . Mn)
>, then we compute Veci = ai · Mi

EV0 for
each Mi and each ai, getting n component vectors Veci. Then, we
have a summation vector EVi = ∑

i Veci by adding all component
vectors.

For the convenience of illustration, we use two-dimensional
rotation matrix R(θ)2×2 to replace Mi in the following way:

R(θ)2×2 =
(

cos θ sin θ

sin θ cos θ

)

, (11)

MN =
(

R(θ0), R
2(θ0), . . . , Ri(θ0), . . . , Rn(θ0)

)>
. (12)

We use the following algorithm to generate a random variable.

A. Generating random variables

Definition 8 (Random Variable Generator, RVG). Given a
positive integer n, the random variable generator (RVG) is defined
by Algorithm 1.

Algorithm 1 takes an integer n as input, outputting a vector
in perpendicular coordinates marked as a random variable. The n
denotes the number of component vectors, and the cardinality of a
possible permutation sequence pi = (a1, a2, . . . , an). The reason of

Chaos 34, 093137 (2024); doi: 10.1063/5.0220154 34, 093137-4
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FIG. 2. Histogram of random variables with respect to Vx and Vy .

choosing possible permutation sequence is discussed in Sec. III B.
After the possible permutation sequence pi is selected, the num-
bers in it indicate the length of each component vector. As for
the direction of each component vector, we choose to divide 2π
into n piece evenly, so each component vector Evj can be defined as
Evj = (aj, 2 · j · π/n). Then, we output the random variable (Vx, Vy)

= EVi by adding all component vectors.
As shown in Fig. 1, we simulate 20 000 random variables with

n ranging from n = 1 to n = 12. The index at the top of each
sub-figure denotes the number of possible random variables (when
n ≥ 7, the number may be inaccurate due to limited simulation),
while the color in each node represents the frequency in simulation.
All numerical results are rounded to eight decimal places.

For n = 1, 2, 3, there are 1!, 2!, 3! kinds of values of ran-
dom variables, respectively. While for n = 4, there are not 4!
= 24 but 16 different values of random variable, as shown in the
figure. This can be predicted, because when n = 4, each com-
ponent vector has a fixed direction, which are π/2, π , 3π/2,
and 2π , respectively. This means each of these vectors points
either horizontally or vertically. So each sum in the resulting vec-
tor’s x or y direction can be produced in four ways: [1(2 − 1,
3 − 2, 4 − 3), 2(3 − 1, 4 − 2), 3(4 − 1)], which yields four different
combinations: (1, 3), (3, 1), (2, 2), (1, 1). Since each of four ways

implies a rotation direction, which in turn leads to the x and y coor-
dinates of the vector being multiplied by either +1 or −1. Thus,
there are 4 × 4 = 16 unique possibilities.

This explanation can be extended to the cases of n = 5 and
n = 6. However, the number of possible random variables grows
rapidly when n ≥ 7, compared with the simulation of n = 6. This
is intuitive due to the rapid growth of factorial.

We examined the specifics of each random variable simulation
concerning Vx and Vy. The histogram in Fig. 2 displays the distribu-
tion of Vx, Vy values in 20 000 simulations. The x-axis and y-axis in
each sub-figure represent the value and frequency, respectively. The
symmetrical distribution of frequencies in each interval suggests that
the expected values of Vx, Vy should be zero, a finding supported by
the results in Fig. 3. It is also anticipated that as the number of sim-
ulations denoted by n tends toward infinity, Vx, Vy will converge to
a normal distribution.

Another important statistic property is the variance, Fig. 3
shows the variance of Vx, Vy in different values of n. As n increases,
the variance of both Vx and Vy will grow like binomial function,
which means Var(Vx,y) ∝ (n2 + n). This variance growing speed
property is another necessary feature of random walk. In Fig. 3,
we compared the variance of both Vx and Vy, the linearity between
them indicates that Vx and Vy are independent and symmetrical,

Chaos 34, 093137 (2024); doi: 10.1063/5.0220154 34, 093137-5
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FIG. 3. Variance and mean value of Vi with respect to Vx and Vy .

ensuring that this simulation method is like Wiener process, which
is invariant to rotations.

B. Simulating random variables for random walk

One common way to simulate random walk is adding a
sequence of i.i.d. random variables. For example, EVi form a normal
distribution N(µ, σ 2), where µ and σ are the mean and standard
deviations of the normal distribution, respectively. Then, the sum
of normally distributed random variables is a random walk (Lawler
and Limic, 2010),

St =
t
∑

i=0

EVi, (13)

where EVi is marked as a step, V0 is the starting value of the random
walk, and t is the number of steps. Inspired by such method, we tend

to use such method with random variables simulated from RPST to
generate random walk.

To generate a ideal random variable EVi, we first should deter-
mine the length of the possible permutation sequence, i.e., n in
RVG.

Based on the maximum RPS entropy, an natural idea is to
delve a distribution from RPST and use it as probabilities associ-
ated with each possible permutation sequence. Given a fixed set
3 = {λ1, λ2, . . . , λn}, the belief assigned to possible permutation
sequence whose cardinality is identical is the same. When the length
of a possible permutation sequence is determined, then we can select
one of the possible permutation sequence evenly as our probabilities
association method, and that is why we use uniform distribution as
the probabilities associated with each possible permutation sequence
in Sec. III A.

Definition 9 (RPST distribution). Given a maximum length
of permutation sequences N, there are P(N, n) choices to select a

Chaos 34, 093137 (2024); doi: 10.1063/5.0220154 34, 093137-6
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FIG. 4. Discrete probability distribution of PPer(n|N) and PRPS(n|N) with N = 10.

possible permutation sequence with a length of n. The possibil-
ity of selecting n as the length of possible permutation sequence,
when combined with the maximum RPS entropy, defines the RPST
distribution as follows:

PRPS(n|N) = P(N, n) · Mi=n,j = P(N, n)[F(n) − 1]
∑N

i=1 [P(N, i)(F(i) − 1)]
. (14)

To illustrate the validity of the proposed method, we consider
the following way to select a possible length n for permutation
sequence with the same probability as follows.

Definition 10 (Permutation distribution). Given a maximum
length of permutation sequences N, there are

∑N
i=1 i! kinds of per-

mutation sequences, the permutation distribution is defined to
choose a possible length n based on the number of permutation
cases,

PPer(n|N) = P(N, n)
∑N

i=1 P(N, n)
= P(N, n)

F(N) − 1
= P(N, n)

be · N!c , (15)

i.e., the possibility of selecting a possible sequence length n is
in proportion to the magnitude of permutation P(N, n). In other
words, given a maximum length of permutation sequences N, the

TABLE I. The last six elements’ probability assignment of distribution PPer(n|N) and PRPS(n|N), all results are rounded to five digits.

N n = N − 5 n = N − 4 n = N − 3 n = N − 2 n = N − 1 n = N
∑N

n=N−5 P(n|N)

PPer(n|N) 6 3.0700 × 10−3 1.5340 × 10−2 6.1350 × 10−2 1.8405 × 10−1 3.6810 × 10−1 3.6810 × 10−1 1.0000 × 10−0

10 3.0700 × 10−3 1.5330 × 10−2 6.1310 × 10−2 1.8394 × 10−1 3.6788 × 10−1 3.6788 × 10−1 9.9941 × 10−1

...
18 3.0700 × 10−3 1.5330 × 10−2 6.1310 × 10−2 1.8394 × 10−1 3.6788 × 10−1 3.6788 × 10−1 9.9941 × 10−1

...
∞ 1

5!e
1

4!e
1

3!e
1

2!e
1
e

1
e

163
60e

PRPS(n|N) 6 0.0000 × 10−0 7.0000 × 10−5 1.0800 × 10−3 1.3820 × 10−2 1.4035 × 10−1 8.4468 × 10−1 1.0000 × 10−0

10 0.0000 × 10−0 1.0000 × 10−5 2.1000 × 10−4 5.0200 × 10−3 9.0430 × 10−2 9.0433 × 10−1 1.0000 × 10−0

...
18 0.0000 × 10−0 0.0000 × 10−0 3.0000 × 10−5 1.5500 × 10−3 5.2550 × 10−2 9.4587 × 10−1 1.0000 × 10−0

...
∞ 0 0 0 0 0 1 1
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ALGORITHM 2.Random walk generator.

probability of selecting a possible permutation sequence from all
be · n!c sequences is 1/(be · n!c).

We plot the discrete probability distribution of PPer(n|N) and
PRPS(n|N) with N = 10 in Fig. 4. Table I lists the details of the last six

elements’ probability assignment for those two distribution. Based
on above, it is obvious that the last six elements take up most of the
probability assignment. Thus, when selecting a possible length for
permutation sequences, PPer(n|N) tends to choice n from [N − 5, N],
while PPer(n|N) like to assign most of the probability to n = N with
a bigger N. The limit form of PPer(n|N) and PRPS(n|N) is discussed in
Appendix A.

C. Generating random walk with random variables

Using Sec. III B as a construction of generating random walk,
we design the following algorithm to generate random walk with
random variables.

Definition 11 (Random walk generator, RWG). Given a pos-
itive integer T denoted as time steps, the maximum length of permu-
tation sequence N, and the distribution method P(n|N), the random
walk generator (RWG) is defined by Algorithm 2.

Algorithm 2 takes the number of time steps t, a distribution P
used for selection method, and N indicating the maximum length of
permutation sequence, as inputs, returning a matrix T storing values
at each time step.

Figure 5 shows results across different N and P. The color
map illustrates the temporal evolution of the random walk’s trajec-
tory. As N increases, the discrete-time stochastic process T, which

FIG. 5. Visualization of random walk from distribution PPer(n|N) and PRPS(n|N), where color map is showing the time steps.
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FIG. 6. Scaled random walk with different N and the Wiener process with a time step of 2000 and variance control factor % = 24.

FIG. 7. Component value of random walk and theWiener
process of Fig. 6, the 2000 time steps are converted to time
t ∈ [0, 1] for convenience and % is set to 24 % = 24.
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FIG. 8. Variance (left) and mean (right) value of the Wiener process W(t) and limit scale form of random walk from RPST RWn,N(t) across various N and variance control
factor, time steps, and the number of simulations are set to 100, 200, respectively.

is generated from RPST distribution PRPS, shows a motion pattern
resembling random walk, characterized by randomly distributed
points in space.

Comparing the results of N = 10 and N = 30, the motion
exhibits stochastic self-similarity as in random walk. This is because
at each time step, this RPST-generated motion will walk through the
space for each n directions (n being the possible length of permuta-
tion sequence with a maximum length of N). These n paths can be
decomposed into x and y directions in perpendicular coordinates,
similar to the two-dimensional random walk where the walker ran-
domly chooses one of two perpendicular directions with a fixed step
size.

To compare the proposed method’s limit scale form with
the Wiener process, we employ a method similar to Definition 7,
to simulate the limit scale form of the RPST-generated random
walk,

RWn,N(t) =
√

%

N
√

N

1√
n

∑

1≤i≤bntc

EVi, t ∈ [0, 1], (16)

where N is the maximum length of a permutation sequence, n is the
number of time step, and % is a variance control factor that scales

the variance of RPST-generated random walk . As N, n → infty,
RWn,N(t) toward to a Wiener process, the details are discussed in
Appendix A.

The only difference to the Wiener process as a limit scale form

of random walk is that the re-scaling factor
√

%/(N
√

N). This is due
to the fact that the random variables generated from RPST have
variance growing like binomial function, as shown in Fig. 3. Thus,
this redesigned re-scaling factor ensures the variance of random
variables is invariant to n.

Since simulations are discrete, and for convenience of illustra-
tion, we generate the proposed stochastic process T with a time step
of 2000 and re-scale to RWn,N(t) with setting % = 24.

As shown in Fig. 6, the scaling RPST-generated random walk
do visually seem the same as standard Wiener process, not only the
randomly walked point path but also the boundaries. More details
about the component values about X and Y axis are plotted in Fig. 7.
Based on this result, it seems that the proposed stochastic process
converges to the Wiener process as N increases. However, additional
verification is required before reaching a definitive conclusion.

In Fig. 8, the mean and variance values of various
stochastic processes are compared to the Wiener process across
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different % values, with time steps and sample processes limited to
100 and 200, respectively. The five intervals are set to [0, 20), [0, 40),
[0, 60), [0, 80), [0, 100) to minimize errors.

Results show that all proposed methods with different N exhibit
properties similar to the Wiener process in terms of mean value and
variance, where the mean value is zero and variance scales with time
steps. Compared the sub-figures in Fig. 8, the difference lies in the
slope of variance, which is why we introduce the variance control
factor % to regulate the variance of the proposed stochastic process.
This ensures that the variance of the process aligns with that of a
Wiener process.

From the results and analysis presented above, it is evident
that as the sample size (N) increases, the RPST-generated random
walk converges to a Wiener process, which is the limit scale form of
a two-dimensional random walk. This demonstrates the successful
derivation of a random walk from RPST.

IV. CONCLUSION

Random permutation set theory (RPST) is a promising exten-
sion of evidence theory that introduces ordered information to its
reasoning framework. The indexed order in RPST can be viewed
as a time series, which motivates the exploration of a connection
between RPST and random walk, a fundamental topic in probability
theory. This paper demonstrates that RPST can be used to construct
a Gaussian random walk and, in the limit, a Wiener process. The
established link between RPST and random walk provides insights
into the physical meaning of RPST and enables its application in
existing random walk domains. This not only expands the applica-
tion scope of RPST but also provides insights for combination the
strengths of both RPST and random walk for problem-solving.

Future investigations should concentrate on overcoming the
limitations of current study. This may involve elucidating the physi-
cal implications of RPST through its association with random walks.
Subsequently, the application of this random walk model to real-
world scenarios, such as epidemiological modeling, financial market
analysis, and machine learning algorithm, could be explored.
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APPENDIX: PROOF OF DERIVING RANDOM WALK

FROM RPST

In this section, we will analyze the RPST-generated random
walk in detail and demonstrate its similarities with random walk in
mathematics.

1. Analysis on random variables

In Sec. III, the random variables are first defined for generating
random walk. these variables are generated using the order property
of RPST. As a simulation method, its important statistic properties
like expected value and variance should be reviewed.

a. Expected value analysis. Lemma 1. (Expected value of a
random variable). The expected value of a random variable generated
with RVG is zero, namely,

E [Vi] = 0. (A1)

Proof. As described in Algorithm 1, when dealing with an inte-
ger set of length N, the likelihood of selecting a specific permutation
sequence is equal, with a probability of

P {V = Vi} = 1

N!
. (A2)

To determine the expected value in each direction, we calculate the
frequency of numbers appearing in a fixed direction, such as 2π ·i

N
.

The magnitude of this direction in a simulation is determined by

|Vcomponent| = P {V = Vi} ·
N
∑

j=1

[

j · (N − 1)!
]

= 1 + N

2
. (A3)

Due to symmetry in direction generation and identical magnitudes,
the resultant sum vector

(

Vx, Vy

)

is anticipated to yield a value of 0.

Thus, the expected value of
(

Vx, Vy

)

or Vi is

E
[(

Vx, Vy

)]

= E [Vi] = 0. (A4)

�

Figure 3 also displays the mean value of Vx, Vy in 20 000

simulations, suggesting the expected value of EVi is zero.

b. Variance analysis. Variance is a measure of dispersion, which
is pretty useful in generating random walk. As shown in Fig. 3, the
variance of Vx and Vy are quantitatively identical, and both of them
exhibit a binomial growth rate with respect to N.

Lemma 2 (Variance of a random variable). The variance of a
random variable generated from RVG is a binomial function on N,
namely:

Var( EVi) ∝ (N2 + N). (A5)
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Proof. In Fig. 3, it can be directly observed that the variance
of both Vx and Vy is in proportion to N2. This relationship can be
explained from the following perspectives.

As indicated in Appendix 1 a, the expected value of magni-
tude in each direction is proportional to the maximum length of
permutation sequence N, while the expected value of EVi remains
zero, as demonstrated in Lemma 1. This ensures that as N increases,
the distribution of random variables maintains its symmetry, resem-
bling a round boundary. The size of this boundary is determined by
the value of N, as shown in Fig. 1. Therefore, there exists a critical
value N0, such that when N2 > N1 ≥ N0, random variables EVi2 gen-
erated with N = N2 can be represented by the random variables EVi1

generated with N = N1, denoted as

EVi2 = f(N2 − N1) · EVi1, (A6)

where f(x) is a function R → R, as shown in Appendix 1 a.
Then based on the propagation property of variance:

Var(aV) = a2Var(V), (A7)

where a is a constant, and Appendix 1 b, one can easily delve such
result in Lemma 2. �

2. Analysis on permutation distribution and RPST

distribution

Lemma 3 (Limit form of RPST distribution). When N
→ infty, the RPST distribution will converge to the following form:

lim
N→∞

PRPS(n = N|N) = 1 (A8)

Proof. The RPST distribution is based on the maximum RPS
entropy, this distribution will surely converge to P(n = N|N) = 1,
as suggested in Table I. This result is determined by its definition on
Eq. (14). In our previous work (Zhou et al., 2024), we proved that

lim
N→∞

N
∑

i=1

[P(N, i) (F(i) − 1)] − e · (N!)2 = 0, (A9)

F(N) − 1 = be · N!c − 1 (A10)

Compared with P(N, n)[F(n) − 1], we get

lim
N→∞

PRPS(n = N|N) = N! (be · N!c − 1)

e(N!)2

= lim
N→∞

N!be · N!c
e(N!)2

− lim
N→∞

1

e(N!)2

= 1 − 0

= 1 (A11)

This result ensures that when N is bigger enough, this distribu-
tion will converge to the following probability distribution:

PRPS(n|N) =
{

1, n = N;

0, others.
(A12)

�

This probability distribution can be explained by the maximum
entropy principle. This principle states that the distribution with the
highest entropy is the most likely to represent the current state of
a system. Therefore, the larger the value of N, the more likely it
is that the system will choose the permutation sequence with the
maximum length. This is because a longer permutation sequence
indicates more uncertainty.

However, the probability assignment in Permutation distri-
bution will not converge to a single element. Conducted from
Definition 15, we have

lim
N→∞

PPer(n|N) = lim
N→∞

P(N, n)

be · N!c

= lim
N→∞

N!

(N − n)!
/ (be · N!c)

= lim
N→∞

1

e(N − n)!
. (A13)

Thus, permutation distribution will converge to the limit form
as shown in Table I. In contrast to the RPST distribution, the per-
mutation distribution exhibits a greater degree of variability, which
hinders the generation of i.i.d. random variables. Consequently, it is
not suitable for simulating random walks.

3. Analysis on RPST-generated random walk

In previous section, it is proved that RPST distribution will con-
verge to a probability distribution shown in Eq. (A12), ensuring its
generation of i.i.d. random variables, which is a necessity for gen-
erating random walk. Some statistics properties of RPST-generated
random walk are analyzed in this section.

The histogram in Fig. 2 displays the generation of random
variables. It is expected that, for a fixed value of N, the RVG will
produce random vectors that adhere to a normal distribution. This
convergence towards a normal distribution is controlled by the cen-
tral limit theorem (CLT) and Donsker’s theorem, which ensure that
as N → ∞, the summation vector EVi = (Vx, Vy) will be distributed
according to a normal distribution N(0, σ 2

N), where σ 2
N = f(N)σ 2 and

f(N) ∝ N2 is a binomial function with respect to N. This result is
supported by Lemma 2 and Fig. 3.

Due to the binomial growth of variance, we design the re-

scaling factor
√

%/(N
√

N) to fitting the variance pattern of the
Wiener process. This re-scaling factor comes from the following
theorem:

Theorem 1. The RPST-generated random walk RW(t) can be
converted to the Wiener process if the following limit form exists:

W(t) = lim
n,N→∞

RWn,N(t) = lim
n,N→∞

√
%

N
√

N

1√
n

∑

1≤i≤bntc

EVi, t ∈ [0, 1].

(A14)

Proof. The difference between RW(t) and Gaussian random
walk lies in the variance, if we can scale the variance of RW(t) to fit
into normal distribution, then following Definition 7 one can easily
proves it.
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As demonstrated in Lemmas 1 and 2, we get

E [RW(t)] = E

[

t
∑

i=0

Vi

]

= 0. (A15)

Then we have

E
[

RW2(t)
]

=
t
∑

i=1

E
[

V2
i

]

+ 2
∑

1≤i<j<t

E
[

ViVj

]

. (A16)

Since random variables are independent with each other, then
for any i 6= j, E

[

ViVj

]

= 0.
Using the equation of variance

Var(X) = E
[

X2
]

− E [X]2 , (A17)

we get

E
[

V2
i

]

= Var(Vi) ∝ (N2 + N). (A18)

Together with Appendix 3, we get

E
[

RW2(t)
]

=
t
∑

i=1

E
[

V2
i

]

= t · (Var(Vi)) ∝ t(N2 + N). (A19)

Finally, the variance of RW(t) has the following property:

Var(RW(t)) = E
[

RW2(t)
]

∝ t(N2 + N). (A20)

Compared with Gaussian random walk, the growing speed of
Var(RW(t)) is additionally multiplied by N2 + N. In other words,
after t − s steps, the increments of Gaussian random walk Zt−s

∼ N(0, (t − s)σ 2), while in random walk from RPST we have Zt−s ∼
N(0, (t − s)(N2 + N)σ 2). Thus, based on the propagation property

of variance, we construct V′
i = Vi/N

√
N to offset the term (N2 + N).

But there still exists a coefficient between the scaling Vi and the
step of Gaussian random walk (or Wiener process in limiting form),
as shown in Fig. 8, so we design a variance control factor %, then

the final scaling factor would be
√

%/(N
√

N). We set % = 24 to
approximating Gaussian random walk.

So after scaling the RPST-generated random walk to Gaus-
sian random walk, one can use Donsker’s theorem and Definition
7 to construct the form in Theorem 1 to convert a RPST-generated
random walk to a Wiener process, thus Theorem 1 is proved. �

Similar to a Wiener process, the limit scale form of random
walk from RPST RWn,N(0) is also characterized by the following
properties:

• RWn,N(0) = 0. This prosperity is achieved by setting the starting
point to zero V0 = 0.

• RWn,N(t) has independent increments. This property is deter-
mined by the fact that each random variables are independent
with each other, following a step size distribution of normal
distribution N(0, f(N)σ 2).

• For any 0 ≤ s < t, the increments RWn,N(t) − RWn,N(s)
∼ N(0, t − s). This can be done by setting the variance factor
% = 24, as shown in Fig. 8.

• RWn,N(t) is almost surely continuous in t, this is ensured by
Donsker’s theorem as N, n → ∞.

REFERENCES

Ansari-Rad, M., Abdi, Y., and Arzi, E., “Monte Carlo random walk simulation
of electron transport in dye-sensitized nanocrystalline solar cells: Influence of
morphology and trap distribution,” J. Phys. Chem. C 116, 3212–3218 (2012).

Chen, L. and Deng, Y., “Entropy of random permutation set,” Commun. Stat.
Theory Methods 53(11), 4127–4146 (2024).

Chen, X. and Deng, Y., “Evidential software risk assessment model on ordered
frame of discernment,” Expert Syst. Appl. 250, 123786 (2024).

Contreras-Reyes, J. E. and Kharazmi, O., “Belief Fisher–Shannon information
plane: Properties, extensions, and applications to time series analysis,” Chaos,
Solitons Fractals 177, 114271 (2023).

Cui, H., Zhou, L., Li, Y., and Kang, B., “Belief entropy-of-entropy and its appli-
cation in the cardiac interbeat interval time series analysis,” Chaos, Solitons
Fractals 155, 111736 (2022).

Deng, J., Deng, Y., and Bo Yang, J., “Random permutation set reasoning,” IEEE
Trans. Pattern Anal. Mach. Intell. 1–12 (published online 2024).

Deng, Y., “Random permutation set,” Int. J. Comput. Commun. Control 17, 4542
(2022).

Dempster, A. P., “Upper and lower probabilities induced by a multivalued
mapping,” Ann. Math. Stat. 38, 325–339 (1967).

Einstein, A., Investigations on the Theory of the Brownian Movement (Courier
Corporation, 1956).

He, H. and Xiao, F., “A novel quantum Dempster’s rule of combination for pattern
classification,” Inf. Sci. 671, 120617 (2024).

Huang, Y., Xiao, F., Cao, Z., and Lin, C.-T., “Fractal belief Rényi divergence with
its applications in pattern classification,” IEEE Trans. Knowl. Data Eng. 1–16
(2023).

Huang, Y., Xiao, F., Cao, Z., and Lin, C.-T., “Higher order fractal belief Rényi
divergence with its applications in pattern classification,” IEEE Trans. Pattern
Anal. Mach. Intell. 45, 14709–14726 (2023).

Kessing, R. K., Yang, P. -Y., Manmana, S. R., and Cao, J., “Long-range non-
equilibrium coherent tunneling induced by fractional vibronic resonances,”
J. Phys. Chem. Lett. 13, 6831–6838 (2022).

Kharazmi, O. and Contreras-Reyes, J. E., “Deng–Fisher information measure and
its extensions: Application to Conway’s game of life,” Chaos, Solitons Fractals
174, 113871 (2023).

Kharazmi, O. and Contreras-Reyes, J. E., “Belief inaccuracy information measures
and their extensions,” Fluctuation Noise Lett. 23, 2450041 (2024).

Kharazmi, O., Contreras-Reyes, J. E., and Balakrishnan, N., “Jensen–Fisher
information and Jensen–Shannon entropy measures based on complemen-
tary discrete distributions with an application to Conway’s game of life,”
Physica D 453, 133822 (2023).

Kharazmi, O., Jamali, H., and Contreras-Reyes, J. E., “Fisher information and
its extensions based on infinite mixture density functions,” Physica A 624,
128959 (2023).

Lawler, G. F. and Limic, V., Random Walk: A Modern Introduction (Cambridge
University Press, 2010), Vol. 123.

Li, S. and Xiao, F., “Normal distribution based on maximum Deng entropy,”
Chaos, Solitons Fractals 167, 113057 (2023).

Ortiz-Vilchis, P., Lei, M., and Ramirez-Arellano, A., “Reformulation of Deng
information dimension of complex networks based on a sigmoid asymptote,”
Chaos, Solitons Fractals 180, 114569 (2024).

Qiang, C., Deng, Y., and Cheong, K. H., “Information fractal dimension of mass
function,” Fractals 30, 2250110 (2022).

Shafer, G., A Mathematical Theory of Evidence (Princeton University Press, 1976),
Vol. 42.

Shannon, C. E., “A mathematical theory of communication,” Bell Syst. Tech. J. 27,
379–423 (1948).

Thompson, C. J., Kienle, D. F., and Schwartz, D. K., “Enhanced facilitated dif-
fusion of membrane-associating proteins under symmetric confinement,” J.
Phys. Chem. Lett. 13, 2901–2907 (2022).

Tojo, C. and Argyrakis, P., “Correlated random walk in continuous space,” Phys.
Rev. E 54, 58 (1996).

Wang, Y., Cao, X., Weng, T., Yang, H., and Gu, C., “A convex principle of search
time for a multi-biased random walk on complex networks,” Chaos, Solitons
Fractals 147, 110990 (2021).

Chaos 34, 093137 (2024); doi: 10.1063/5.0220154 34, 093137-13

Published under an exclusive license by AIP Publishing

 12 O
ctober 2024 05:41:18

https://pubs.aip.org/aip/cha
https://doi.org/10.1021/jp207907b
https://doi.org/10.1080/03610926.2023.2173975
https://doi.org/10.1016/j.eswa.2024.123786
https://doi.org/10.1016/j.chaos.2023.114271
https://doi.org/10.1016/j.chaos.2021.111736
https://doi.org/10.1109/TPAMI.2024.3438349
https://doi.org/10.15837/ijccc.2022.1.4542
https://doi.org/10.1016/j.ins.2024.120617
https://doi.org/10.1109/TKDE.2023.3342907
https://doi.org/10.1109/TPAMI.2023.3310594
https://doi.org/10.1021/acs.jpclett.2c01455
https://doi.org/10.1016/j.chaos.2023.113871
https://doi.org/10.1142/S021947752450041X
https://doi.org/10.1016/j.physd.2023.133822
https://doi.org/10.1016/j.physa.2023.128959
https://doi.org/10.1016/j.chaos.2022.113057
https://doi.org/10.1016/j.chaos.2024.114569
https://doi.org/10.1142/S0218348X22501109
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1021/acs.jpclett.2c00227
https://doi.org/10.1103/PhysRevE.54.58
https://doi.org/10.1016/j.chaos.2021.110990


Chaos ARTICLE pubs.aip.org/aip/cha

Wang, Y., Li, Z., and Deng, Y., “A new orthogonal sum in random permutation
set,” Fuzzy Sets Syst. 490, 109034 (2024).

Wang, Z., Jusup, M., Guo, H., Shi, L., Geček, S., Anand, M., Perc, M., Bauch, C.
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