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A B S T R A C T

The concept of entropy has played a significant role in thermodynamics and information theory, and is also a
current research hotspot. Information entropy, as a measure of information, has many different forms, such as
Shannon entropy and Deng entropy, but there is no unified interpretation of information from a measurement
perspective. To address this issue, this article proposes Generalized Information Entropy (GIE) that unifies
entropies based on mass function. Meanwhile, GIE establishes the relationship between entropy, fractal
dimension, and number of events. Therefore, Generalized Information Dimension (GID) has been proposed,
which extends the definition of information dimension from probability to mass fusion. GIE plays a role in
approximation calculation and coding systems. In the application of coding, information from the perspective
of GIE exhibits a certain degree of particle nature that the same event can have different representational
states, similar to the number of microscopic states in Boltzmann entropy.
1. Introduction

Entropy, as a physical quantity, plays a role in many fields and is
one of the research hotspots in many disciplines [1–3]. The concept
of entropy dates back to thermodynamics and was first named by
Clausius [4]. Boltzmann proposed Boltzmann entropy formula which
is a view of Statistical Physics [5]. Furthermore, Gibbs proposed the
Gibbs entropy based on probability measure [6]. Then, in information
theory, Shannon entropy is proposed and also is based on probability
measure [7]. Shannon entropy is widely applied in many areas such as
distance [8,9], coding [10,11], statistics [12,13] and so on.

There are many different forms of information entropy. In terms
of information discreteness and continuity, the information entropy of
continuity has also been explored. Differential entropy is a continuous
information entropy [14]. The dimension of differential entropy is
problematic, so Jaynes proposed the Jaynes entropy for correction [15–
17]. Jaynes entropy plays an important role in continuous information,
especially in magnetism [18,19]. On the other hand, information can
not only be represented by probability. Probability is a special case of
mass function [20,21]. Then, Deng entropy was proposed to measure
the information represented by mass functions [22]. The application of
Deng entropy is extensive [23–25]. Considering there is not only combi-
nation information but permutation information, Random Permutation
Set (RPS) and its entropy is proposed to describable the order of
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samples [26]. The forms of different entropy have not been effectively
unified, and fundamentally different entropy measures information
from different perspectives. A unified form of entropy is beneficial for
exploring the essence of information.

Another significant concept worthy of mention is the information
dimension. The fractal dimension, which quantifies the capacity of
fractal expansion, serves as the precursor to the information dimension,
initially introduced by Rényi [27]. The information dimension, being
closely associated with information entropy, serves as an indicator of
the rate of information accumulation. This metric finds widespread
application in various domains, including the analysis of stochastic
processes [28], data compression techniques [29], and inference algo-
rithms [30], among others. The information dimension of Deng entropy
and RPS entropy has also been proposed [31,32]. The information
dimension can be used to calculate information entropy, which was
proposed by Rényi, but it has not been extended to entropy based on
mass function. Therefore, an information dimension corresponding to
a unified form of entropy is also needed.

In order to solve the inconsistency in the form of information
entropy, Generalized Information Entropy (GIE) is proposed. GIE is a
method of measuring information based on mass function. When the
sample space and event space of the mass function are constrained, GIE
can degenerate to the previously mentioned entropy, such as Shannon
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entropy, Deng entropy. On the other hand, corresponding to GIE,
the Generalized Information Dimension (GID) has also been proposed.
GID also describes the growth rate of information and is also a frac-
tal dimension. Based on GID, an approximate formula Approximate
Generalized Information Entropy (AGIE) is proposed to establish the
quantitative relationship between information entropy and information
dimension.

GIE and GID have many application scenarios. A common problem
faced by information entropy is that there may be exponential explo-
sions in the event space, leading to the incalculability of information
entropy. The proposed AGIE effectively solves this problem, providing
a method for estimating GIE, and as the sample space increases, the es-
timated error converges to 0. Another application scenario is encoding.
In the perspective of GIE, the same event can represent different states,
similar to particles.

The structure of the article is as follows. In Section 2, the relevant
preliminaries are introduced. In Section 3, GIE and GID are introduced.
In Section 4, it shows some properties of GIE and GID. In Section 5,
the applications of GIE and GID is shown. In Section 6, the article
summarizes the full text and looks forward to future research topic.

2. Preliminary

2.1. Boltzmann entropy

Boltzmann entropy 𝐻𝑏 is defined as Eq. (1) [5].

𝐻𝑏 = 𝑘𝑏 ∗ 𝑙𝑛(𝑊 ) (1)

where 𝑘𝑏 ≈ 1.380649 ∗ 10−23 J/K is Boltzmann constant which is able
to regard as increasing coefficient and 𝑊 is the number of microstate
of the system.

2.2. Shannon entropy

Shannon Entropy 𝐻𝑠 is defined as Eqs. (2) and (3) [7]. 𝛺 is discrete
sample space containing exclusive and exhaustive samples 𝜃𝑖 as Eq. (4)
and 𝑛 = |𝛺| is size of 𝛺.

𝐻𝑠 = −
∑

𝜃𝑖∈𝛺
𝑝(𝜃𝑖) ∗ 𝑙𝑜𝑔2(𝑝(𝜃𝑖)) (2)

∑

𝜃𝑖∈𝛺
𝑝(𝜃𝑖) = 1 (3)

𝛺 = {𝜃1, 𝜃2, 𝜃3,… , 𝜃𝑛} (4)

2.3. Jaynes entropy

Jaynes entropy is continuous version of Shannon Entropy and is
defined in Eq. (5) where 𝑚(𝜃) reflects invariant measure [15–17].

𝐻𝑗 = ∫𝛺
𝑝(𝜃)𝑙𝑜𝑔2(

𝑝(𝜃)
𝑚(𝜃)

)𝑑𝜃 (5)

.4. Deng entropy

Evidence theory is an extension of probability theory [20,33], where
ass function is assigned to power set. Power set 𝑐 of 𝛺 in Eq. (4) is

s Eq. (6). Mass function of 𝑐 is defined in Eq. (7).

𝑐 = {{𝜃1}, {𝜃2},… , {𝜃𝑛}, {𝜃1, 𝜃2},… , 𝛺} (6)

∑

∈𝑐

𝑚(𝑖) = 1 (7)

Given a group of mass function 𝑚 in Eq. (7), its corresponding
ntropy, named as Deng entropy, is defined in Eq. (8) where |𝑖| is size
f event 𝑖 [22].

𝑑 = −
∑

𝑚(𝑖)𝑙𝑜𝑔2(
𝑚(𝑖)

2|𝑖| − 1
) (8)
2

𝑖∈𝑐
t

2.5. Entropy of random power set

According to Pascal triangle [34], the power set can be seen as
all possible event combinations, since 2𝑛 − 1 =

∑𝑛
𝑘=1

(𝑛
𝑟

)

where
(𝑛
𝑟

)

is
ombinatorial number. Similarly, all possible event permutations can
e defined as Random Permutation Set (RPS) in Eq. (9) [26].

(𝛺) = {𝐴𝑖𝑗 |𝑖 = 0,… , 𝑁 ; 𝑗 = 1,… , 𝑃 (𝑁, 𝑖)}

=
{

(𝜃1), (𝜃2),… , (𝜃𝑁 ), (𝜃1, 𝜃2), (𝜃2, 𝜃1),… ,

(𝜃1, 𝜃2,… , 𝜃𝑁 ),… , (𝜃𝑁 , 𝜃𝑁 − 1,… , 𝜃1)
}

(9)

Given a group of permutation mass function ℳ in Eq. (10), its
corresponding RPS entropy is defined in Eq. (11), where 𝐹 (𝑖) is shown
in Eq. (12) where 𝑃 (𝑛, 𝑘) is permutation number.
𝑁
∑

𝑖=1

𝑃 (𝑁,𝑖)
∑

𝑗=1
ℳ(𝐴𝑖𝑗 ) = 1 (10)

𝐻𝑟 = −
𝑁
∑

𝑖=1

𝑃 (𝑁,𝑖)
∑

𝑗=1
ℳ(𝐴𝑖𝑗 )𝑙𝑜𝑔2(

ℳ(𝐴𝑖𝑗 )
𝐹 (𝑖) − 1

) (11)

𝐹 (𝑖) =
𝑗=1
∑

𝑖
𝑃 (𝑖, 𝑗) (12)

2.6. Fractal dimension

The fractal dimension 𝐷 is a measure of how a pattern fills space
and defined in Eq. (13) where 𝑁 is number of units and 𝜀 is scaling
factor [35–37].

𝑁 = 𝜀−𝐷 (13)

2.7. Rényi dimension

Rényi proposed an another form of Shannon Entropy with Rényi
dimension 𝑑 as Eq. (14) where 𝜉 is a random variable and 𝜉𝑛 is defined
in Eq. (15) [27,29]. In Eq. (14), 𝑜(1) represents a remainder term
tending to 0 for 𝑛 → +∞.

𝐻 (𝜉𝜂) = 𝑑 ∗ 𝑙𝑜𝑔2𝑛 + ℎ + 𝑜(1) (14)

𝜉𝑛 =
1
𝑛
⌊𝑛𝜉⌋ (15)

Rényi Dimension is defined in Eq. (16) which is a measure of the
fractal dimension of a probability distribution.

𝑑(𝜉) = lim
𝑛→+∞

𝐻 (𝜉𝑛)
𝑙𝑜𝑔2𝑛

(16)

3. Proposed entropy and dimension

3.1. From probability to mass function

A Probability Space (𝛺, , 𝑝) is a triple where 𝛺 is sample space,  is
-algebra which is also called event space and 𝑝 is probability measure
∶  → [0, 1]. For 𝐴𝑖 ∈  , 𝑝 is countably additive in Eq. (17) and needs

o satisfy Eq. (18) . Probability 𝑝(𝐴) means that the possibility of event
happening.

(
∞
⋃

𝑖=1
𝐴𝑖) =

∞
∑

𝑖=1
𝑝(𝐴𝑖) (17)

∑

𝑖∈
𝑝(𝐴𝑖) = 1 (18)

Mass function is a generalized probability [33] shown in Fig. 1.
ass function space (𝛺,  , 𝑚) is also a triple and event space  is not
-algebra. Events in Event Space  is composed of relations of samples
n the sample space 𝛺. Simultaneously, 𝑚 is a map 𝑚 ∶  → [0, 1] and 𝑚
s not countably additive. 𝑚 needs to satisfy Eq. (19). Mass 𝑚(𝐴) means
hat the confidence of subset of event 𝐴 happening which is reflected
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Fig. 1. Relation between probability and mass function.

y encoding in Section 5.4. For example, given two exclusive samples
, 𝐵, 𝑚(𝐴𝐵) means confidence of 𝐴, 𝐵 or 𝐴𝐵 happening.

∑

𝜃𝑖∈
𝑚(𝑖) = 1 (19)

For mass function, its belief function (Bel) and plausibility function
(Pl) are defined in Eqs. (20) and (21) and are upper and lower bounds
of probability in Eq. (22) [20,38]. When event space is only composed
of events which contain single sample 𝐴, the upper bound 𝑃 𝑙(𝐴) and
ower bound 𝐵𝑒𝑙(𝐴) equal to mass function 𝑚(𝐴), then mass function is

degenerated to probability in Eq. (23).

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (20)

𝑃 𝑙(𝐴) =
∑

𝐴∩𝐵≠∅
𝑚(𝐵) (21)

𝐵𝑒𝑙(𝐴) ⩽ 𝑝(𝐴) ⩽ 𝑃 𝑙(𝐴) (22)

𝑝(𝐴) = 𝑚(𝐴) (∵ 𝐵𝑒𝑙(𝐴) = 𝑚(𝐴), 𝑃 𝑙(𝐴) = 𝑚(𝐴)) (23)

Example 1 (The Division of Possibilities by Mass and Probability). Ac-
cording to Eqs. (18) and (19), it shows that mass and probability are
essentially partition possibility into different event spaces  ,  . Event
space  of probability only contains events composed of single sample
and event space  of mass contains events composed of combinations.
Assuming the sample space is 𝛺 = {𝐴,𝐵}, Fig. 2 represents different
divisions of mass and probability which correspond to Eqs. (24) and
(25).

𝑝(𝐴) + 𝑝(𝐵) = 𝑝(𝐴𝐵) = 𝑝(𝛺) = 1 (24)

𝑚(𝐴) + 𝑚(𝐵) + 𝑚(𝐴𝐵) = 1 (25)

It is noteworthy that  in mass function space (𝛺,  , 𝑚) is general-
ized. Event space cannot be combination but permutation even complex
information structure shown in Fig. 3. In the event space, events repre-
sent the basic relationships between samples. A combination indicates
that all samples within the combination are possible to happen, with
no priority among the samples, whereas permutation implies a certain
level of priority information. Therefore, the generalized information
entropy mentioned later only considers the discrete event space and
is not compatible with the continuous Jaynes entropy.
3

3.2. Generalized information entropy

Generalized Information Entropy (GIE) 𝐻𝑔 is defined as Eqs. (26)
and (27) where 𝛺 is sample space,  is event space and 𝑚 is mass
function. (⋅) is event space generated from corresponding event.

Definition 1 (Generalized Information Entropy).

𝐻𝑔 = −
∑

𝑖∈(𝛺)
𝑚(𝑖) ∗ 𝑙𝑜𝑔2(

𝑚(𝑖)
|(𝑖)|

) (26)
∑

∈(𝛺)
𝑚(𝑖) = 1 (27)

xample 2 (Local Similarity). GIE has fractal characteristics and ex-
ibits local similarity. In the calculation process of GIE, it is necessary
o calculate the corresponding event space (𝐴) of each event 𝐴 in
vent space  such as an example in Fig. 4. This is a process of local
imilarity, in which the event space is regenerated from each event.

For a sample space 𝛺 in Eq. (28), its events spaces in form of
ombination 𝑐 and permutation 𝑝 are in Eqs. (29) and (30). For the

combination event 𝐴𝐵, the generated event space is in Eq. (31); for
the permutation event 𝐴𝐵, the generated event space is in Eq. (32).

hese event spaces generated by events have physical significance,
epresenting all possible relationships that can be represented by the
vent in the encoding.

= {𝐴,𝐵, 𝐶} (28)

𝑐 = {𝐴,𝐵, 𝐶,𝐴𝐵,𝐴𝐶,𝐵𝐶,𝐴𝐵𝐶} (29)

𝑝 = {𝐴,𝐵, 𝐶,𝐴𝐵,𝐴𝐶,𝐵𝐴,𝐵𝐶, 𝐶𝐴,𝐶𝐵,𝐴𝐵𝐶,𝐴𝐶𝐵,

𝐵𝐴𝐶,𝐵𝐶𝐴,𝐶𝐴𝐵,𝐶𝐵𝐴} (30)

𝑐 (𝐴𝐵) = {𝐴,𝐵,𝐴𝐵} (31)

𝑝(𝐴𝐵) = {𝐴,𝐵,𝐴𝐵,𝐵𝐴} (32)

xample 3 (Degeneration from GIE Shannon Entropy). When each event
in event space is composed of single sample and mass function equals
probability, the GIE is degenerated to Shannon Entropy in Eq. (33).

𝐻𝑔 = −
∑

𝑖∈(𝛺)
𝑚(𝑖) ∗ 𝑙𝑜𝑔2(

𝑚(𝑖)
|(𝑖)|

)

|(𝑖)|=1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ −

∑

𝑖∈𝛺
𝑝(𝑖) ∗ 𝑙𝑜𝑔2(𝑝(𝑖)) = 𝐻𝑠

(33)

xample 4 (Degeneration from GIE to Deng Entropy). When event space
s power set of sample space, the GIE is degenerated to Deng Entropy
n Eq. (34).

𝑔 = −
∑

𝑖∈(𝛺)
𝑚(𝑖) ∗ 𝑙𝑜𝑔2(

𝑚(𝑖)
|(𝑖)|

)

|(𝑖)|=2|𝑖|−1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ −

∑

𝑖∈(𝛺)
𝑚(𝑖)𝑙𝑜𝑔2(

𝑚(𝑖)
2|𝑖| − 1

) = 𝐻𝑑

(34)

Example 5 (Degeneration from GIE to RPS Entropy). When event space
is permutation event space, the GIE is degenerated to RPS Entropy in
Eq. (35).

𝐻𝑔 = −
∑

𝑖∈(𝛺)
𝑚(𝑖) ∗ 𝑙𝑜𝑔2(

𝑚(𝑖)
|(𝑖)|

)

𝐴𝑖𝑗∈(𝛺)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ −

𝑁
∑

𝑖=1

𝑃 (𝑁,𝑖)
∑

𝑗=1
𝑚(𝐴𝑖𝑗 )𝑙𝑜𝑔2(

𝑚(𝐴𝑖𝑗 )
|(𝑖)|

)

|(𝑖)|=𝐹 (𝑖)−1
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐ −

𝑁
∑

𝑖=1

𝑃 (𝑁,𝑖)
∑

𝑗=1
𝑚(𝐴𝑖𝑗 )𝑙𝑜𝑔2(

𝑚(𝐴𝑖𝑗 )
𝐹 (𝑖) − 1

)

(35)
= 𝐻𝑟
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Fig. 2. Mass function assignment of sample space 𝛺 = {𝐴,𝐵}.
Fig. 3. Sample space 𝛺 = {𝐴,𝐵, 𝐶} and different map  of mass function space (𝛺,  , 𝑚).
Fig. 4. Local similarity of GIE calculation and expression.
3.3. Generalized information dimension

Generalized Information Dimension (GID) 𝐷𝑔 is defined as Eq. (36).
For a certain infinite distribution of mass function, 𝐷𝑔 is a constant.
When mass function is probability mass function, GID degenerates to
Rényi dimension [27]. GID is also fractal dimension of mass function
distribution and reflect the increasing rate of information.

Definition 2 (Generalized Information Dimension).

𝐷𝑔 = lim
|𝛺|→+∞

𝐻𝑔

𝑙𝑜𝑔2(|(𝛺)|)
(36)

Example 6 (Degeneration from GID to Rényi Dimension). When mass
function is probability and 𝛺 is a discrete set, GID degenerates to Rényi
4

Dimension in Eq. (37).

𝐷𝑔 = lim
|𝛺|→+∞

𝐻𝑔

𝑙𝑜𝑔2(|(𝛺)|)
|(𝛺)|=|𝛺|

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐
𝐻𝑔=𝐻𝑠

lim
|𝛺|→+∞

𝐻𝑠
𝑙𝑜𝑔2|𝛺|

(37)

The process function 𝐷̂𝑔 is defined as Eq. (38). 𝐷𝑔 in Eq. (36) is the
numerical value at which the process function of 𝐷̂𝑔 takes its limit. 𝑐 is
a constant in Eq. (38) which depends on event space  and distribution
of mass function. 𝑐 comes from removing the limitation operator in
Eq. (36).

Definition 3 (Process Function of Generalized Information Dimension).

𝐷̂𝑔(𝑛) = 𝐷̂𝑔(|𝛺| = 𝑛) =
𝐻𝑔 + 𝑐

(38)

𝑙𝑜𝑔2(|(𝛺)|)
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3.4. An approximate value of entropy

Because GID 𝐷𝑔 of a certain mass distribution is a constant, Ap-
roximate Generalized Information Entropy (AGIE) 𝐻̂𝑔 is calculated
n Eq. (39) which is a transformation of Eq. (38). As the size |𝛺|

f sample space increases, the computational complexity of GIE 𝐻𝑔
an become enormous, and even encounter exponential explosions,
aking it impossible to obtain completely accurate data. Therefore,

he accurate value of GID 𝐷𝑔 can only be calculated through symbols
nference rather than numerical values. Eq. (40) shows that 𝐷̂𝑔(𝛾) is
onsistent estimator of 𝐷𝑔 . Then, in order to ensure the maximum
ccuracy, 𝛾 is set to the maximum sample space size that 𝐻𝑔 can be
alculated. The constant 𝑐(𝛾) term of AGIE can be obtained in the
q. (41). Some GIEs may have an exponential explosion in the size
(𝛺)| of the event space, so AGIE can use reasonable estimator ̂

|(𝛺)|.

efinition 4 (Approximate Generalized Information Entropy).

̂𝑔(|𝛺|, 𝛾) = 𝐷̂𝑔(𝛾) ∗ 𝑙𝑜𝑔2( ̂
|(𝛺)|) + 𝑐(𝛾) (39)

lim
𝛾|→+∞

|𝐷̂𝑔(𝛾) −𝐷𝑔| = 0 (40)

(𝛾) = 𝐻𝑔 − 𝐷̂𝑔(𝛾) ∗ 𝑙𝑜𝑔2( ̂
|(𝛺)|)

= −
∑

𝑖∈(𝛺)
𝑚(𝑖) ∗ 𝑙𝑜𝑔2(

𝑚(𝑖)
|(𝑖)|

) − 𝐷̂𝑔(𝛾) ∗ 𝑙𝑜𝑔2( ̂
|(𝛺)|) (41)

AGIE reveals that information entropy equals to increasing rate
𝐷̂𝑔 multiply bit number of event space states |(𝛺)|. In the sight of
Boltzmann entropy in Eq. (1), entropy is equal to constant 𝑘𝑏 multiply
natural bit number 𝑙𝑛(⋅) of states |𝑊 |. Hence, the form and meaning of
GIE in Eq. (39) is tend to Boltzmann Entropy in Eq. (1).

4. Properties

Next, some properties of GIE and GID will be introduced.

4.1. Maximum generalized information entropy

When sample space 𝛺 and event space (𝛺) is certain, the maximum
GIE distribution is in Eq. (42).

𝑚(𝑖) =
|(𝑖)|

∑

𝑗∈(𝛺) |(𝑗)|
(42)

Proof. GIE with Lagrange function [39] is in Eq. (43).

𝐻𝑔 = −
∑

𝑖∈(𝛺)
𝑚(𝑖) ∗ 𝑙𝑜𝑔2(

𝑚(𝑖)
|(𝑖)|

) + 𝜆(
∑

𝑖∈(𝛺)
𝑚(𝑖) − 1) (43)

Gradient ∇𝐻𝑔 of Eq. (43) is Eq. (44).

∇𝐻𝑔𝑖 =
𝜕𝐻𝑔

𝜕𝑚(𝑖)
= −𝑙𝑜𝑔2

𝑚(𝑖)
|(𝑖)|

− 1
𝑙𝑛2

+ 𝜆 (44)

Make the gradient equal to 0 to solve for the maximum value, while
ombining the constraints of the mass function in Eq. (45).

∇𝐻𝑔 = 0
∑

𝑖∈(𝛺) 𝑚(𝑖) = 1 (45)

Solve of Eq. (45) is maximum GIE distribution in Eq. (42). The value
f maximum GIE is in Eq. (46).

𝑎𝑥(𝐻𝑔) = 𝑙𝑜𝑔2(
∑

𝑖∈(𝛺)
|(𝑖)|) □ (46)

xample 7 (Maximum GIE of Rare Event Space). Assume the sample
pace is defined in Eq. (47). And the event space (⋅) is generated by
ollowed rules:

1. If |𝑖| = 1, (𝑖) = 𝑖
5

Table 1
Example event space pattern.

Event 𝑖 Event space (𝑖) Size |(𝑖)| 𝑚(𝑖)

𝐴 {𝐴} 1 1
9

𝐵 {𝐵} 1 1
9

𝐶 {𝐶} 1 1
9

𝐴𝐵 {▷∅, 𝐴, 𝐵,��𝐴𝐵} 2 2
9

𝐴𝐶 {▷∅, 𝐴, 𝐶,��𝐴𝐶} 2 2
9

𝐵𝐶 {▷∅, 𝐵, 𝐶,��𝐵𝐶} 2 2
9

��𝐴𝐵𝐶 {▷∅, 𝐴, 𝐵, 𝐶, 𝐴𝐵,𝐴𝐶,𝐵𝐶,��𝐴𝐵𝐶} 6 /

2. If |𝑖| > 1, (𝑖) = 2𝑖 − 𝑖 − ∅

nd for sample space 𝛺, the corresponding event spaces are shown in
able 1.

= {𝐴,𝐵, 𝐶} (47)

The event space  is able to be regarded as remove the sample space
rom its power set and when sample space only contains one sample,
vent space is sample space itself. Then the GIE is as Eq. (48).

𝑔 = −
∑

𝑖∈(𝛺)
𝑚(𝑖) ∗ 𝑙𝑜𝑔2(

𝑚(𝑖)
|(𝑖)|

)

= −𝑚(𝐴) ∗ 𝑙𝑜𝑔2(𝑚(𝐴)) + 𝑚(𝐵) ∗ 𝑙𝑜𝑔2(𝑚(𝐵))+

𝑚(𝐶) ∗ 𝑙𝑜𝑔2(𝑚(𝐶)) + 𝑚(𝐴𝐵) ∗ 𝑙𝑜𝑔2(
𝑚(𝐴𝐵)

2
)+

𝑚(𝐴𝐶) ∗ 𝑙𝑜𝑔2(
𝑚(𝐴𝐶)

2
) + 𝑚(𝐵𝐶) ∗ 𝑙𝑜𝑔2(

𝑚(𝐵𝐶)
2

)

(48)

When GIE comes the maximum value, the maximum condition is
shown in Table 1 which is consistent with Eq. (42). The value of the
maximum GIE is in Eq. (49) which is consistent with Eq. (46).

𝐻𝑔 = −(3 ∗ 1
9
∗ 𝑙𝑜𝑔2(

1
9
) + 3 ∗ 2

9
∗ 𝑙𝑜𝑔2(

2
9 ∗ 2

))

= 𝑙𝑜𝑔29
(49)

4.2. Finite distribution

Given a finite mass distribution, corresponding GID is 0 in Eq. (50)
nd corresponding GIE is a constant in Eq. (51). Rényi dimension and
hannon entropy have the same property [27].

𝑔 = 0 (50)

𝑔 = 𝑐 (51)

.3. Infinite distribution: Process view

Mass function is able to follow arbitrary infinite distribution. Thus,
ith the same distribution, there is a process of mass functions with

ncreasing |(𝛺)|.
There are several common distributions in Eqs. (52), (53), (54),

55) and (56). The significance of mentioned distributions are listed
n Table 2.

(𝑖) = 1
|𝛺|

(52)

𝑚(𝛺) = 1 (53)

𝑚(𝑖) = 1
2|𝛺| − 1

(54)

(𝑖) = 2|𝑖| − 1
∑

𝑖∈𝛺 (2|𝑖| − 1)
(55)

ℳ(𝐴𝑖𝑗 ) =
𝐹 (𝑖) − 1

∑𝑁 (56)

𝑖=1[𝑃 (𝑁, 𝑖)(𝐹 (𝑖) − 1)]
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Fig. 5. GIE process with increasing |(𝛺)|.
Table 2
The significance of selected distribution.

Equation number Significance

(52) Maximum Shannon entropy
(53) Full assignment to single event
(54) Uniform assignment
(55) Maximum Deng entropy
(56) Maximum RPS entropy

The process lines of GIE from |𝛺| = 1 to |𝛺| = 20 are plotted in
Fig. 5(a). To clearly analyze the law of variation, lines of Shannon
entropy, Deng entropy and RPS entropy are split into Figs. 5(b)–5(d).

4.3.1. Shannon entropy process
The process line of Shannon entropy is shown in Fig. 5(b). As the

expanding of sample space, the process line exhibits a logarithmic
function characteristic. As discussed in the relationship between mass
and probability, the events in the event space of Shannon entropy
6

𝑐

are composed of a single sample. In other words, the event space of
Shannon entropy is the same as the sample space 𝛺 in Eq. (57). When
the probability is distributed from the maximum entropy, the formula
of GID 𝐷𝑔 corresponding to the Shannon entropy is a constant 1 in
Eq. (58). According to the calculation method of AGIE, the correspond-
ing constant terms can be calculated in Eq. (59). Because both the GID
and constant terms here are accurate values, the analytical expression
of AGIE 𝐻̂𝑔 is independent of the sample space size 𝛾 for maximum
accuracy. At this point, there is no error in AGIE, which equals GIE in
Eq. (60).

|(𝛺)| = |𝛺| (57)

𝐷𝑔 = lim
|𝛺|→+∞

𝐻𝑔

𝑙𝑜𝑔2(|(𝛺)|)

= lim
|𝛺|→+∞

𝑙𝑜𝑔2(|𝛺|)
𝑙𝑜𝑔2(|(𝛺)|)

= 1

(58)
= 𝑙𝑜𝑔2(|𝛺|) − 𝑙𝑜𝑔2(|𝛺|) = 0 (59)
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Table 3
Estimated slope and GID of Deng entropy process line.

Equation number Estimated slope GID

(53) 1 1
(54) 1.5 1.5
(55) 1.585 𝑙𝑜𝑔23 ≈ 1.585

The curves of AGIE and GIE completely overlap in Fig. 5(b). Because
he size of the Shannon entropy event space is consistent with its sample
pace, it ultimately presents in logarithmic form. When the probability
istribution is not the maximum entropy, the GID and constant terms
aries. When GID is not equal to zero, Shannon entropy increases
ogarithmically with the increasing size of sample space, and only the
oefficients 𝐷̂𝑔(𝛾) of logarithmic and constant terms 𝑐(𝛾) change in
q. (61).

𝐻̂𝑔 = 𝑙𝑜𝑔2(|(|𝛺|)) ∗ 𝐷̂𝑔 + 𝑐
𝐷𝑔=1

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⟹
|(𝛺)|=|𝛺|

𝐻̂𝑔 = 𝑙𝑜𝑔2(|𝛺|) = 𝐻𝑔
(60)

𝐻̂𝑔(|𝛺|, 𝛾) = 𝐷̂𝑔(𝛾) ∗ 𝑙𝑜𝑔2(|𝛺|) + 𝑐(𝛾) (61)

4.3.2. Deng entropy process
Zhao et al. proposed the linearity of Deng entropy [40]. The fun-

damental law of linearity phenomenon is able to explained by GIE
and GID. In Fig. 5(c), there is truly a phenomenon that Deng entropy
increases linearly with the size of the sample space. The event space
 of Deng entropy is composed of a combination of sample spaces 𝛺,
so the size |(𝛺)| of event space is in Eq. (62). To avoid exponential
explosion, the estimated size ̂

|(𝛺)| of the event space is shown in
Eq. (63). ̂

|(𝛺)| is not a consistent estimator, but 𝑙𝑜𝑔2( ̂
|(𝛺)|) is a

consistent estimator in Eq. (64). So the approximate entropy of Deng
entropy can be written as Eq. (65). Therefore, the Deng entropy process
exhibits linearity.

|(𝛺)| = 2|𝛺| − 1 (62)

̂
|(𝛺)| = 2|𝛺| (63)

lim
|𝛺|→+∞

𝑙𝑜𝑔2(2|𝛺| − 1) − 𝑙𝑜𝑔2(2|𝛺|) = lim
|𝛺|→+∞

𝑙𝑜𝑔2(
2|𝛺| − 1
2|𝛺|

) = 0 (64)

̂𝑔(|𝛺|, 𝛾) = 𝐷̂𝑔(𝛾) ∗ 𝑙𝑜𝑔2(2|𝛺|) + 𝑐(𝛾)

= 𝐷̂𝑔(𝛾) ∗ |𝛺| + 𝑐(𝛾)
(65)

The first three curves in Fig. 5(c) represent the actual values of
eng entropy under different distributions, while the 𝑘̂ in the legend

epresents the slope of the actual curve obtained by the least squares
ethod. Referring to Eq. (65) the estimate of slope 𝑘̂ is approximate

o GID. The GID of Deng entropy can be accurately calculated. Hence,
IDs of selected three mass distributions are show in Table 3. Estimated

lopes of Eqs. (53) and (54) is equal to corresponding GIDs, and due
o |𝛺| is not large enough, the approximate value of estimated slope
̂ = 1.585 is approximate to GID 𝐷𝑔 = 𝑙𝑜𝑔23 in Eq. (55).

The last three curves in Fig. 5(c) are AGIE of selected distributions.
he curves of AGIE and GIE do not completely overlap in Fig. 5(c).
hen |𝛺| ∈ [1, 3], there is a certain deviation between AGIE and Deng

ntropy. This deviation originates from the feature of approximation,
here the error between the estimated value and the target value
ecreases as increasing of |𝛺|, and eventually converges to 0. So, when
𝛺| is a small number, it is not recommended to calculate by AGIE, but
7

o directly calculate the exact value of GIE.
.3.3. RPS entropy process
There is an exponential explosion problem with the size |(𝛺)| of

he event space in RPS that |(𝛺)| cannot accurately calculate timely
hen size |𝛺| of sample space is a big number. To solve this problem,
hou et al. proposed the maximum envelope lim

|𝛺|→+∞
∑

𝑖∈(𝛺) |(𝑖)| of
PS under the limit condition in Eq. (66) [41]. So according to the
aximum entropy form of GIE in Eq. (46), approximate RPS entropy

an be calculated as Eq. (67).

lim
𝛺|→+∞

∑

𝑖∈(𝛺)
|(𝑖)| = lim

|𝛺|→+∞
𝑒 ∗ (|𝛺|!)2 (66)

̂𝑔(|𝛺|) = 𝑙𝑜𝑔2(𝑒 ∗ (|𝛺|!)2) (67)

In Fig. 5(d), the two curves represent the accurate value of GIE
nd the value of AGIE. Similar to the process of Dentropy, when
𝛺| ∈ [1, 3], there is a certain deviation between AGIE and GIE. This
henomenon comes from the fact that AGIE converges to GIE under
xtreme conditions. When the sample space is too small, the gap will be
bvious, so a hybrid calculation strategy of GIE is proposed to optimize
he problem in Section 5.3.

.4. GIE of random distributions

There are infinity cases of distribution. The distributions mentioned
n Section 4.3 are common. Special two-point distribution 𝜅(𝑚, 𝑛) is
hown as an example of random distributions which is defined as
ollows:

• The sample space size |𝛺| is equal to 𝑛. Randomly choose two
events 𝐸1, 𝐸2 which size is equal to |𝛺| − 1 and assign (𝑚, 1 − 𝑚)
as their mass functions. The event space is defined as power set.
Hence, the GID of 𝜅(𝑚, 1 − 𝑚) is in Eq. (68).

𝑔 = lim
|𝛺|→+∞

𝐻𝑔

𝑙𝑜𝑔2(|(𝛺)|)

= lim
|𝛺|→+∞

−𝑚 ∗ 𝑙𝑜𝑔2(
𝑚

2|𝛺|−1−1 ) − (1 − 𝑚) ∗ 𝑙𝑜𝑔2(
1−𝑚

2|𝛺|−1−1 )

𝑙𝑜𝑔2(2|𝛺| − 1)

= lim
|𝛺|→+∞

𝑙𝑜𝑔2(2|𝛺|−1 − 1)
𝑙𝑜𝑔2(2|𝛺| − 1)

= lim
|𝛺|→+∞

2|𝛺| − 1
2|𝛺| − 2

= 1

(68)

In the case, 𝑚 and GID is not relevant. According to Eq. (39), the
pproximate curves and process line when 𝑚 = 1

5 are plotted in Fig. 6.
here is a constant bias 𝑐 = 0.278 of approximate curve. And for saving
erformance of computer, there is an approximate algorithm of GIE
rocess value in Section 5.3.

. Applications

.1. Binary search

After numerical example, there is a practical application in Appli-
ation 1 to verify proposed entropy and dimension.

pplication 1 (Single No. 1 Problem). In a game with 32 teams, the
organizer has access to all their orders. In order to identify the single top
1 team (such a competition form) who have the highest order, how many
questions must we ask at most? The organizer can only respond with ‘‘Yes’’
or ‘‘No’’.

Solve of Application 1:

1. Identify sample space 𝛺 as Eq. (69). 𝐴𝑖 stands for ‘‘𝑖th participant
gets the highest score’’.

(69)
𝛺 = {𝐴1, 𝐴2, 𝐴3,… , 𝐴32}
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Fig. 6. Special two-point distribution when 𝑚 = 1
5
.

2. Identify event space (𝛺) as Eq. (70).

(𝛺) = 𝛺 (70)

3. Assign the general mass function as Eq. (71) because there are
1024 different units in state space (𝛺).

𝑚(𝑖) = 1
|(𝛺)|

= 1
32

, 𝑖 ∈ (𝛺) (71)

4. Calculate the Generalized Information Dimension according to
Distribution as Eq. (72).

𝐷𝑔 = lim
|𝛺|→+∞

𝐻𝑔

𝑙𝑜𝑔2(|(𝛺)|)

= lim
|𝛺|→+∞

−
∑

𝑖∈(𝛺) 𝑚(𝑖) ∗ 𝑙𝑜𝑔2(
𝑚(𝑖)
|(𝑖)| )

𝑙𝑜𝑔2(|𝛺|)

= lim
|𝛺|→+∞

−
∑

|𝛺| 1
|𝛺|

∗ 𝑙𝑜𝑔2(
1
|𝛺|

1 )

𝑙𝑜𝑔2(|𝛺|)

= lim
|𝛺|→+∞

𝑙𝑜𝑔2(|𝛺|)
𝑙𝑜𝑔2(|𝛺|)

= 1

(72)

5. Calculate the Number of problems 𝑁 which is equal to General-
ized Information Entropy as Eq. (73).

𝑁 = ⌈𝐷𝑔 ∗ 𝑙𝑜𝑔2(|(𝛺)|)⌉

= ⌈1 ∗ 𝑙𝑜𝑔2(32)⌉

= 5

(73)

5.2. Ergodicity

Application 2 (Group of Highest Score Participant Problem). In a test with
32 participants, the organizer has access to all their scores. In order to
identify the group of top 1 participant (such as enrollment exam) who have
the highest score, how many questions must we ask at most? The organizer
can only respond with ‘‘Yes’’ or ‘‘No’’.

Solve of Application 2:

1. Identify sample elements 𝑥 as Eq. (69) which is same as Appli-
cation 1. 𝐴 stands for ‘‘𝑖th participant gets the highest score’’.
8

𝑖 p
2. Identify event space (𝛺) as Eq. (74). (𝛺) is the power set
of 𝑥 because how many participants get the highest score is
unknown.

(𝛺) = {{𝐴1}, {𝐴2},… , {𝐴32}, {𝐴1, 𝐴2},… , 𝛺} (74)

3. Assign the general mass function as Eq. (75) because all partici-
pants are possible to get the highest score.

𝑚(𝛺) = 𝑚(𝐴1, 𝐴2,… , 𝐴32) = 1 (75)

4. Calculate the Generalized Information Dimension according to
Distribution as Eq. (76).

𝐷𝑔 = lim
|𝛺|→+∞

𝐻𝑔

𝑙𝑜𝑔2(|(𝛺)|)

= lim
|𝛺|→+∞

−
∑

𝑖∈(𝛺) 𝑚(𝑖) ∗ 𝑙𝑜𝑔2(
𝑚(𝑖)
|(𝑖)| )

𝑙𝑜𝑔2(|(𝛺)|)

= lim
|𝛺|→+∞

−𝑚(𝑥) ∗ 𝑙𝑜𝑔2(
𝑚(𝑥)

2|𝛺|−1 )

𝑙𝑜𝑔2(2|𝛺| − 1)

= lim
|𝛺|→+∞

−1 ∗ 𝑙𝑜𝑔2(
1

2|𝛺|−1 )

𝑙𝑜𝑔2(2|𝛺| − 1)

= lim
|𝛺|→+∞

𝑙𝑜𝑔2(2|𝛺| − 1)
𝑙𝑜𝑔2(2|𝛺| − 1)

= 1

(76)

5. Calculate the Number of problems 𝑁 which is equal to General-
ized Information Entropy as Eq. (77).

𝑁 = ⌈𝐷𝑔 ∗ 𝑙𝑜𝑔2(|(𝛺)|)⌉

= ⌈1 ∗ 𝑙𝑜𝑔2(232 − 1)⌉

= 32

(77)

Application 1 is classic problem of binary search which contains
ingle target. And Application 2 is classic problem of ergodicity which
ontains unknown number of targets.

.3. Estimation of entropy under large number

In the sight of GIE, there is a heavy problem that if the size of the
ample space is large, GIE may not be computable. In the other hand,
ingle computer performance is not enough to calculate the accurate
alue of GIE, and approximate value is able to provide a relative
ccurate value of GIE. In Section 3.4, the specific form of AGIE is
roposed. There may be a certain gap between the approximate value
nd GIE, but it will gradually converge to 0 as size |𝛺| of sample space
ncreases. This phenomenon is embodied in the Deng entropy process
nd the RPS process in Sections 4.3.2 and 4.3.3. Then the accuracy
f GIE can be guaranteed to the greatest extent through the hybrid
trategy:

1. When size |𝛺| is computable, to ensure the most accuracy, GIE
in Eq. (26) is the best way to calculate GIE.

2. When size |𝛺| is not compute, to ensure the most accuracy, AGIE
in Eq. (39) is the best way to calculate GIE.

In the specific calculation of AGIE, the determining size 𝛾 of the
aximum computable sample space needs to be completed first in
lgorithm 1. So, the generated GIE 𝐻(𝑖), 𝑖 ∈ [1, 𝛾] can be used for least
quares estimation of GID 𝐷̂𝑔(𝛾) and constant 𝑐(𝛾).

Another approximate scenario for calculating GIE is to specify preci-
ion 𝜎. When precision is specified, estimating GID and constant terms
oes not require reaching the maximum computable sample space.
hen the approximate GID converges within the specified precision,
GIE will meet the conditions for the specified precision.

According to Eq. (39), approximate GIE 𝐻̂𝑔 calculation needs ap-
̂
roximate GID 𝐷𝑔 and bias 𝑐. Algorithm 2 is a swift way to make
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Algorithm 1: Determine the largest size of computable sample
space

Input: Generalized Information Entropy 𝐻𝑔(𝛾) with sample
space size 𝛾 under a specified distribution

Output: Computable maximum sample space size 𝛾
// Initialize sample space size

1 𝛾 = 1;
2 while 𝑇 𝑟𝑢𝑒 do

// Determine whether GIE can be calculated at
this time

3 if 𝐻𝑔(𝛾) then
// Update maximum sample space size

4 𝛾 = 𝛾 + 1;
5 else
6 break;
7 end
8 end
9 return 𝛾

sure the approximate GID 𝐷̂𝑔 and bias 𝑐 at current accuracy 𝜎. So the
orresponding AGIE calculation algorithm is in Algorithm 2.

Algorithm 2: Estimate Generalized Information Dimension and
constant item

Input: Generalized information entropy 𝐻𝑔(𝑛) with sample
space size 𝑛 under a specified distribution, target
precision 𝜎, function of event space size ||(𝑛)

Output: Approximate generalized information dimension 𝐷̂𝑔 ,
constant item of approximate generalized information
entropy 𝑐

// Initialize the primary size of sample space
1 𝑛 = 2;
// Initialize the primary Generalized

Information Dimension
2 𝐷𝑝𝑟𝑒 =

𝐻(𝑛)
𝑙𝑜𝑔2(||(𝑛))

;
// Traverse size of sample space

3 while True do
// Update the size of sample space

4 𝑛 = 𝑛 + 1;
// Update the Generalized Information

Dimension
5 𝐷𝑐𝑢𝑟 =

𝐻(𝑛)
𝑙𝑜𝑔2(||(𝑛))

;
// Determine whether the target accuracy has

been achieved
6 if |𝐷𝑐𝑢𝑟 −𝐷𝑝𝑟𝑒| ⩽ 𝜎 then
7 𝐷̂𝑔 = 𝐷𝑐𝑢𝑟;
8 break;
9 end
10 end

// Calculate the bias of approximate
Generalized Information Entropy

11 𝑐 = 𝐻(𝑛) − 𝐷̂𝑔 ∗ 𝑙𝑜𝑔2(||(𝑛));
12 return 𝐷̂𝑔 , 𝑐

Example in Section 4.4 is generated by Algorithm 2. The last two
urves in Fig. 6 are both AGIE curves, and the difference between the
wo curves is the presence or absence of a constant term 𝑐. Accurate GID
̂𝑔 is in Eq. (68) and after estimation of 𝑐 = −0.2780, approximate GIE
s in Eq. (78). In order to analyze the gap of AGIE and GIE more clearly,
he difference between GIE and AGIE is shown in Fig. 7. It can be
bserved that as the sample space increases, GIE and AGIE completely
9

overlap, with an error of 0, and the estimation effect is ideal.

𝐻̂𝑔 = 𝐷̂𝑔 ∗ 𝑙𝑜𝑔2(|(𝑥)|) + 𝑐
𝐷𝑔=1

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐
𝑐=−0.278

𝑙𝑜𝑔2(2|𝛺| − 1) − 0.278

≈ |𝛺| − 0.278

(78)

.4. Information representation

Information entropy represents the average amount of information.
hannon entropy can be written as the expectation of the function 𝐼(𝑥)
n Eqs. (79) and (80) where 𝐼(𝑥) is information of event 𝑥 and  is event
pace.

(𝑥) = −𝑙𝑜𝑔2(𝑝(𝑥)) (79)

𝑠 = 𝐸𝑝(𝐼(𝑥)) = −
∑

𝑥∈
𝑝(𝑥) ∗ 𝑙𝑜𝑔2(𝑝(𝑥)) (80)

The unit of information storage corresponding to Shannon entropy
s bit, and there is no difference between bits. When the bit expresses
, it indicates that nothing has happened, and 1 indicates that it
as occurred, which is the same as the meaning of Boolean algebra.
o distinguish different significance of bit, a fixed-length encoding is
ommon to used. A fixed-length code consists of 𝑛 bits, and represent
𝑛 states. The feature of fixed-length encoding is also obvious that
ifferent events can only be expressed by combining bits. The left side
f Fig. 8 is a fixed-length encoding for the 5 objects.

From the perspective of mass function, the information storage units
orresponding to each event in the event space are different. The states
hat each unit can express are consistent with the event space generated
y the corresponding event. Therefore, in GIE, information of event 𝑥 is
efined as Eq. (81) and GIE can also be written in form of expectation
n Eq. (82). Fig. 4 is an example of encoding expression of sample space
𝐴,𝐵}. 3 different storage units were generated, expressing up to 5
ifferent states.

(𝑥) = −𝑙𝑜𝑔2(
𝑚(𝑥)
|(𝑥)|

) (81)

𝑔 = 𝐸𝑚(𝐼(𝑥)) = −
∑

𝑖∈(𝛺)
𝑚(𝑖) ∗ 𝑙𝑜𝑔2(

𝑚(𝑖)
|(𝑖)|

) (82)

In GIE coding, distinguishing a object requires distinguishing both
he information unit and the state of the information unit. It is also
onsistent with the physical meaning of mass function. Different infor-
ation units are analogized to different particles. The encoding of GIE
oes not require the combination of bits. In other words, each state
orresponds to one state of one information unit. The right side of
ig. 8 is the case of Deng entropy encoding. Different colored boxes
epresent different information units and events at the same time. And
he numbers in the box represent the samples in the sample space.
he blue box represents event 0, the yellow box represents event 1,
nd the green box represents event 01. It is worth noting that the
ox corresponding to event 01 can only express 0 or 1, and in Fig. 8,
t corresponds to Object 3 and Object 4. The meaning of maximum
ntropy is that all states expressed by information units are effectively
tilized, so the frequency of each state is equal. This is also the same
s the condition for maximum GIE in Eq. (42) that the mass function
f an event is proportional to the number of states that the information
nit of the event can express.

. Conclusion

By observing and analyzing the formal changes from Boltzmann
ntropy to Shannon entropy and Deng entropy, this paper proposes
generalized information entropy to accommodate different forms

f information measurement and discover the common properties of
ifferent forms of information entropy. Information dimension is a
ractal dimension that describes the growth rate of information. To
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Fig. 7. Loss between approximate GIE and accurate GIE.
Fig. 8. Different encoding patterns between Shannon entropy and Deng entropy. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
d
m

accommodate different forms of information dimension, this paper also
proposes a generalized information dimension. The most important
conclusion is that information entropy can be determined through
information dimension and event space.

In practical applications, generalized information entropy has made
important contributions to the approximate calculation of entropy and
the encoding logic corresponding. Through the relationship between
generalized information entropy and generalized information dimen-
sion, generalized information entropy can be calculated in an approx-
imate form under the condition of large numbers, effectively avoiding
the problem of incalculability caused by exponential explosion. Mean-
while, a hybrid computing strategy has also been proposed to ensure
maximum accuracy. Another application of generalized information en-
tropy is encoding systems. In the perspective of generalized information
entropy, the representation of information has also been expanded,
not limited to bits. Mass function makes events particle-like, and the
same event can have different representation states. Therefore, the
generalized information entropy exhibits a similar form to Boltzmann
entropy at the limit state.
10
The other properties of generalized information entropy and gen-
eralized information dimensionality are still being explored. The in-
formation representation in generalized information entropy shares
similarities with quantum theory, and the potential correlations need
to be further studied. On the other hand, generalized information
entropy considers discrete systems and is not effectively compatible
with continuous information measurement. Further research is being
conducted on the representation and measurement methods of contin-
uous information. Generalized information entropy is a type of entropy
with more physical properties and contains potential.
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