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A B S T R A C T

The information volume of mass function (IVMF) is an effective tool for measuring the uncertainty of basic
probability assignments in power sets. However, the current IVMF will yield counterintuitive results when
applied to an inconsistent frame of discernment (FOD). To address this issue, an improved IVMF based
on plausibility transformation method (PTM) is proposed in this paper. Compared to existing methods, the
proposed method yields a more reasonable result in cases where the FOD is inconsistent. Additionally, the
proposed IVMF can be viewed as a geometric mean of first-order information volume and higher-order
information volume, which can degenerate into Shannon Entropy in a probability distribution. The efficacy and
rationality of the proposed IVMF are demonstrated through a series of numerical examples and an application
in threat assessment.
1. Introduction

Shannon entropy (Shannon, 1948) is a fundamental concept in
information theory. Given a probability distribution, Shannon entropy
can measure the uncertainty of information. From the study of commu-
nication to the analysis of neural networks and genetics, information
theory has found a vast array of applications, making it a foundational
concept in modern science.

Though probability theory has long been the dominant approach to
reasoning under uncertainty, there are some situations in real life where
it is difficult to express the uncertainty in probability theory (Che et al.,
2022). To address this issue, many alternatives have been presented in
recent decades, including Dempster–Shafer evidence theory (Dempster,
2008; Shafer, 1976), fuzzy set (Van Laarhoven & Pedrycz, 1983; Zadeh,
1965), evidential reasoning (Zhou et al., 2023; Zhou, Zhou et al., 2022),
Z numbers (Jiang, Cao et al., 2019; Liu et al., 2019; Luo & Deng,
2020), D numbers (Deng & Jiang, 2019; Liu & Deng, 2019; Liu &
Zhang, 2020), soft sets (Alcantud et al., 2019; Feng et al., 2020), rough
sets (Fujita et al., 2019; Pawlak, 1982), and PRS (Deng, 2022). Because
Dempster–Shafer evidence theory is effective to handle uncertainty, it
has extended to complex domain (Xiao, 2021a, 2021c, 2022a; Xiao,
Cao et al., 2022) and quantum theory (Xiao, 2022b; Xiao & Pedrycz,
2022; Zhou, Tian et al., 2023). It also brings various applications in
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different fields, such as unclear information description (Xiao et al.,
2020), decision-making in emergency (Fei & Ma, 2023; Fei & Wang,
2022a, 2022b), knowledge management (Anjaria, 2022), portfolio con-
struction (Bisht & Kumar, 2023), link prediction (Fang et al., 2022),
cellular automaton (Kharazmi & Contreras-Reyes, 2023) and so on.

However, it also comes with new problems, such as determining
the extent of uncertainty under the framework of discernment (Deng,
2020b) and combining evidence in conflict (Abellán et al., 2021). To
address the former issue, various methods have been proposed, includ-
ing JS entropy (Jiroušek & Shenoy, 2018), SU measurement (Wang &
Song, 2018), FB entropy (Zhou & Deng, 2022a), time fractal-based en-
tropy (Zhou & Deng, 2022b) and other modes of analysis (Cui & Deng,
2023; Cui et al., 2022; Dutta & Shome, 2022; Zhou, Zhu et al., 2022).
Among those, the belief entropy, also named Deng entropy (Deng,
2016), made it a natural fit for use in evidence theory (Abellán, 2017).
In recent years, Deng entropy has been applied in a variety of fields,
such as pattern recognition (Cui et al., 2019; Kazemi et al., 2021), data
fusion (Richter et al., 2022; Tang et al., 2018), decision-making (Pan
& Gao, 2023), as well as the field of complex numbers (Pan & Deng,
2023). Based on the splitting method to divide mass functions, the
information volume of mass function (IVMF) (Deng, 2020a) is proposed
using Deng entropy, which has also gained acceptance and been applied
in many fields (Deng & Deng, 2021; Zhou & Deng, 2022a, 2022b).
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However, the existing information volume has some open issues.
For example, when the frame of discernment of two different mass
functions does not agree with each other, i.e. although the elements in
the mass function with consistent cardinality differ, they have the same
BPA distribution. Then the existing IVMF will not be able to distinguish
them and will give the same result, which is not reasonable.

To address this issue, an improved IVMF based on plausibility
transformation method (PTM) is proposed in this paper. Compared with
the existing method, the proposed IVMF has the following advantages:

• The proposed IVMF constitutes a geometric mean of first-order
IVMF and higher-order IVMF.

• The proposed method corresponds to Shannon entropy if the mass
functions degenerate to a probability distribution.

• Compared with the existing IVMF, the proposed method obtains
a more reasonable result when the FOD of given mass functions
is inconsistent.

In real-world applications such as expert systems, the majority of
he decision-making process involves uncertain information processing,
hich can be modeled by evidence theory. However, most of the pre-
ious applications of evidence theory did not consider the situations of
easuring uncertainty of a certain period instead of a specific moment

n time. Inspired by Zhou and Deng (2022b)’ s explanation about the
hysical meaning of Deng entropy, splitting-based uncertainty mea-
ures like IVMF can be used for measuring the information volume
f a certain period, while other kinds of uncertainty methods are not
pplicable here. This paper applies IVMF to the application area of
hreat assessment for the first time. Compared with the existing IVMF,
he proposed method can better handle the case when the frame of
iscernment is inconsistent due to insufficient information, equipment
alfunction, or other constraints.

This paper is structured as follows. Section 2 briefly introduces some
ertinent concepts. Section 3 presents the proposed IVMF, followed by
ome numerical examples in Section 4. Section 5 provides an applica-
ion to validate the proposed method with a comparison to the existing
ethods. Finally, Section 6 concludes this paper.

. Preliminaries

.1. Dempster-Shafer evidence theory

How to model and measure the uncertainty and dynamics of the sys-
em (Chu et al., 2022; Wang, Hou et al., 2022; Wang, Mu et al., 2022;

ang et al., 2023) have attracted a lot of attention, and the Dempster–
hafer evidence theory is one of the alternative solutions. In this
ontext, some preliminary concepts are introduced in this subsection.

efinition 1 (BPA Dempster, 2008). An n-element finite set 𝛩 denoted
= {𝑡1, 𝑡2,… , 𝑡𝑛}, is called the frame of discernment (FOD).
A basic probability assignment (BPA), or the mass function, consti-

utes a mapping from the power set of 𝛩 marked as 2𝛩 to the interval
0, 1]. For any element 𝐴𝑖 in 2𝛩, the mass function 𝑚(𝐴𝑖) satisfies:

𝑚(∅) = 0;
∑

𝐴𝑖∈2𝛩
𝑚
(

𝐴𝑖
)

= 1; 𝑚
(

𝐴𝑖
)

⩾ 0.

Definition 2 (Belief Function Shafer, 1976). For a FOD 𝛩 with 𝑛 ele-
ments, and its BPA B

(

2𝛩
)

, the belief (Bel) function and the plausibility
(Pl) function are defined as follows.

𝐵𝑒𝑙
(

𝐴𝑖
)

=
∑

𝐵𝑖⊆𝐴𝑖

𝑚
(

𝐵𝑖
)

= 1 − 𝑃 𝑙
(

𝐴𝑖

)

, (1)

𝑙
(

𝐴𝑖
)

=
∑

𝑚
(

𝐵𝑖
)

= 1 − 𝐵𝑒𝑙
(

𝐴𝑖

)

. (2)
2

𝐵𝑖∩𝐴𝑖≠∅∧𝐵𝑖⊆𝛩
.2. Shannon entropy

Entropy is significant when it comes to measuring uncertainty in
nformation theory, which is developed and applied in many fields,
uch as divergence (Xiao, Wen et al., 2022), information quality (Xiao,
021b), negation (Xiao, 2021c; Xiao & Pedrycz, 2022), etc. Especially,
hannon entropy has been applied not only in information theory but
lso in probability theory.

efinition 3 (Shannon Entropy Shannon, 1948). For a probability dis-
ribution 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑛}, the Shannon entropy of 𝑃 is defined as

𝑆 (𝑃 ) = −
∑

𝑝𝑖∈𝑃
𝑝𝑖 log(𝑝𝑖), (3)

here 𝑝𝑖 satisfies ∑𝑛
𝑖=1 𝑝𝑖 = 1.

2.3. Deng entropy and information volume of mass function

Definition 4 (Deng Entropy Deng, 2016). Given a FOD 𝛩 and its corre-
sponding BPA, Deng entropy is defined as

𝐸𝐷(𝑚) = −
∑

𝐴𝑖⊆𝛩
𝑚(𝐴𝑖) log

𝑚
(

𝐴𝑖
)

2|𝐴𝑖| − 1
, (4)

where |𝐴𝑖| is the cardinality of 𝐴.

Deng entropy can degenerate into Shannon entropy when the mass
function is defined for individual elements. When splitting the mass
function into its power set, more information within the mass function
is considered. Thus, Deng proposed the IVMF (Deng, 2020a) based on
Deng entropy.

Definition 5 (Information Volume of Mass Function Deng, 2020a). For an
n-element FOD 𝛩, the information volume of mass function (IVMF) is
defined as

𝐻𝐼𝑉 = lim
𝑛→∞

( 𝑛
∑

𝑡=0

∑

𝐴𝑖∈𝛩
𝑚(𝑡)(𝐴𝑖) log

𝑚
(

𝐴𝑖
)

2|𝐴𝑖| − 1
+

∑

𝐵𝑖⊆𝛩∧|𝐵𝑖|>1
𝑚(𝑛)(𝐵𝑖)

)

, (5)

here 𝑚(𝑛)(𝐴𝑖) is the corresponding 𝑛th time of splitting the mass func-
ion of 𝐴𝑖 based on the distribution of maximum Deng entropy (Kang

Deng, 2019):

(

𝐹𝑖
)

=

(

2|𝐹𝑖| − 1
)

∑

𝐺𝑖⊆𝐹𝑖

(

2|𝐺𝑖| − 1
) . (6)

To better understand the splitting process in calculation, Fig. 1
hows the splitting method of a vacuous BPA: B(𝛩) = {𝑚({𝛩}) =
({𝜃1}) = 𝑚({𝜃2}) =

1
3 }, where 𝛩 = {𝜃1, 𝜃2}.

.4. Some probability transformation methods

efinition 6 (Plausibility Transformation Method Cobb & Shenoy, 2006).
or an n-element FOD 𝛩 with its BPA B(2𝛩), the plausibility transfor-
ation method (PTM) is defined as

𝑙𝑚
(

𝜃𝑖
)

=
𝑃 𝑙

(

𝜃𝑖
)

∑𝑛
𝑗=1 𝑃 𝑙

(

𝜃𝑗
) . (7)

Definition 7 (Pignistic Probability Transformation Smets, 2005). The
pignistic probability transformation (PPT) of an n-element FOD 𝛩 with
its BPA B(2𝛩) is defined as

𝐵𝑒𝑡𝑃
(

𝜃𝑖
)

=
∑ 𝑚(𝐴𝑖)

|𝐴 |

. (8)

𝜃𝑖∈𝐴𝑖∧𝐴𝑖∈2𝛩 𝑖
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Fig. 1. The splitting process of IVMF in Definition 5.
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Though PTM does not satisfy upper and lower bounds consistency,
it is one of the probability transformation methods consistent with
Dempster’s combination rule (Han et al., 2016). As for PPT, it can be
seen as redistributing the mass function of compound focal elements
to singletons included in them equally, which may result in some
counterintuitive results. More details are given in Section 4.

Apart from PPT and PTM which are based on probability trans-
formation, there are other kinds of probability transformation meth-
ods based on different aspects, like uncertainty minimization (Pan &
Deng, 2020), belief interval (Deng & Wang, 2020), evidential correla-
tion (Jiang, Huang et al., 2019), ordered weight network (Chen et al.,
2021) and importance weight (Zhao et al., 2023).

In Section 3, the definition of the improved IVMF will be given,
which is based on PTM.

2.5. Uncertainty measures

In evidence theory, various uncertainty measures are proposed by
many scholars. Some measures and entropy used later in comparison
with the proposed method are listed in Table 1.

3. The proposed method

Given a BPA, the information volume can be measured by Deng’s
method (Deng, 2020a). However, when the FOD of two different BPAs
does not agree with each other, the result of Deng’s IVMF gives coun-
terintuitive results. Hence, the paper proposed a new kind of IVMF to
solve this problem. In Section 3, the proposed IVMF is presented based
on the previous work of Deng’s IVMF (Deng, 2020a) and PTM (Cobb
& Shenoy, 2006). The reasons for choosing PTM instead of PPT will be
discussed in Sections 4 and 5.

Definition 8 (Improved Information Volume of Mass Function). Given a
FOD 𝛩 = {𝜃1, 𝜃2 … , 𝜃𝑛} with its BPA: B(2𝛩) ∶ 𝑚(𝐴𝑖) 𝑓𝑜𝑟 𝐴𝑖 ∈ 2𝛩. The
proposed IVMF is defined as follows.

𝐻𝐼𝑉 ′−𝑃𝑇𝑀 =
√

𝐻𝐼𝑉 ⋅ 𝐸𝑆 (𝑃 𝑙𝑚(𝜃𝑖)) =

√

√

√

√𝐻𝐼𝑉 ⋅
𝑛
∑

𝑃 𝑙𝑚
(

𝜃𝑖
)

log𝑃 𝑙𝑚
(

𝜃𝑖
)

. (9)
3

𝑖=1
where 𝐻𝐼𝑉 is Deng’s IVMF (Deng & Deng, 2021), while 𝐸𝑆 and the
𝑙𝑚(𝜃𝑖) refer to the Shannon entropy and PTM, respectively.

In Section 4, numerical examples are given to demonstrate the
ffectiveness of the proposed method, including a comparison to Deng’s
VMF.

. Examples and discussion

xample 1. Supposed a FOD: 𝛩 = {𝑡1, 𝑡2}, there are two BPAs defined
as:

𝑚1({𝑡1}) = 4∕7, 𝑚1({𝑡2}) = 3∕7,

𝑚2({𝑡1}) = 1∕4, 𝑚2({𝛩}) = 3∕4.

Example 1 is used to illustrate the calculation process. For 𝑚1, and
based on Definition 5, the result of IVMF denoted as 𝐻𝐼𝑉 is

𝐻𝐼𝑉 = −4∕7 log (4∕7) − 3∕7 log (3∕7) ≈ 0.985228. (10)

The corresponding mass functions of PTM are equal to the initial
mass functions since there is only a singleton element in the mass
function. Then the sum of Shannon entropy can be expressed as
2
∑

𝑖=1
𝐸𝑆 (𝑃 𝑙𝑚(𝑡𝑖)) = −4∕7 log (4∕7) − 3∕7 log (3∕7) = 𝐻𝐼𝑉 ≈ 0.985228, (11)

where 𝑃 𝑙𝑚(𝑡𝑖) = 𝑚1(𝑡𝑖) 𝑖 = 1, 2.

Based on Eqs. (10) and (11) and Definition 8, the result of the
proposed IVMF marked as 𝐻𝐼𝑉 ′−𝑃𝑇𝑀 is

𝐻𝐼𝑉 ′−𝑃𝑇𝑀 =
√

𝐻𝐼𝑉 ⋅ 𝐸𝑆 (𝑃 𝑙𝑚(𝑡𝑖)) ≈ 0.985228.

As for 𝑚2, the 𝐻𝐼𝑉 is calculated based on Definition 5:

𝐻𝐼𝑉 = lim
𝑛→∞

( 𝑛
∑

𝑡=0

∑

𝐴𝑖∈𝛩
𝑚(𝑡)(𝐴𝑖) log

𝑚
(

𝐴𝑖
)

2|𝐴𝑖| − 1
+

∑

𝐵𝑖⊆𝛩∧|𝐵𝑖|>1
𝑚(𝑛)(𝐵𝑖)

)

(12)

≈ 3.381670.
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Table 1
Uncertainty measures listed above are used to compare with the proposed method.

Method Expression

Maximum distribution Maximum value

Hohle’s measure 𝐶(𝑚) = −
∑

𝐴𝑖∈2𝛩
𝑚
(

𝐴𝑖
)

log𝐵𝑒𝑙
(

𝐴𝑖
)

(Höhle, 1982) 𝑚
(

𝜃𝑖
)

= 1
|𝛩|

log(|𝛩|)

Yager’s measure 𝐸(𝑚) = −
∑

𝐴𝑖∈2⊖
𝑚
(

𝐴𝑖
)

log𝑃 𝑙
(

𝐴𝑖
)

(Yager, 2008) 𝑚
(

𝐴𝑖
)

= 1
𝐾
,∀1 → 𝐾

{

𝐹1
}

∩⋯ ∩
{

𝐹𝐾
}

= ∅
log(|𝛩|)

Weighted Hartley entropy 𝐸𝐷𝑃 (𝑚) = −
∑

𝐴𝑖∈2𝛩
𝑚
(

𝐴𝑖
)

log |
|

𝐴𝑖
|

|

(Higashi & Klir, 1982) 𝑚(𝛩) = 1 log(|𝛩|)

Yang and Han’s method 𝑇𝑈 𝐼 (𝑚) = 1 −
√

3
𝑛

∑

𝜃𝑖∈𝛩
𝑑𝑙 ([𝐵𝑒𝑙

(

𝜃𝑖
)

, 𝑃 𝑙
(

𝜃𝑖
)]

, [0, 1]
)

(Yang & Han, 2016) 𝑚(𝛩) = 1 1

Deng’s measure 𝑇𝑈 𝐼
𝐸 (𝑚) =

𝑛
∑

𝑖=1

[

1 − 𝑑𝐼
𝐸

([

Bel
(

𝜃𝑖
)

, 𝑃 𝑙
(

𝜃𝑖
)]

, [0, 1]
)]

(Deng, 2018) 𝑚(𝛩) = 1 |𝛩|

Deng entropy (Deng, 2016) 𝐸𝑑 (𝑚) = −
∑

𝐴𝑖∈2𝛩
𝑚
(

𝐴𝑖
)

log 𝑚(𝐴𝑖)
2𝐴𝑖 ∣−1

(Kang & Deng, 2019) 𝑚(𝐴) = 2|𝐴𝑖 |−1
∑

𝐴𝑖∈2𝛩
2𝐴𝑖 ∣−1

log
(

3|𝛩| − 2|𝛩|

)

SU measurement 𝑆𝑈 (𝑚) =
∑

𝜃𝑖∈𝛩

[

− 𝑃 𝑙(𝜃𝑖)+𝐵𝑒𝑙(𝜃𝑖)
2

log 𝑃 𝑙(𝜃𝑖)+𝐵𝑒𝑙(𝜃𝑖)
2

+ 𝑃 𝑙
(

𝜃𝑖
)

− 𝐵𝑒𝑙
(

𝜃𝑖
)

]

(Wang & Song, 2018) 𝐵𝑒𝑙
(

𝜃𝑖
)

= 0, 𝑃 𝑙
(

𝜃𝑖
)

= 1 |𝛩|

JS entropy 𝐽𝑆(𝑚) =
∑

𝐴𝑖∈2𝛩
𝑚
(

𝐴𝑖
)

log
(

|

|

𝐴𝑖
|

|

)

−
𝑛
∑

𝑖=1
𝑃 𝑙𝑚

(

𝜃𝑖
)

log𝑃 𝑙𝑚
(

𝜃𝑖
)

(Jiroušek & Shenoy, 2018) 𝑚(𝛩) = 1 2 log(|𝛩|)
d
m
w

m
d
m
s
f
e
e

s
a
w

P
t

E

The probability distribution of 𝑡𝑖 based on Definition 6 of PTM is as
ollows.

𝑙({𝑡1}) = 1, 𝑃 𝑙({𝑡2}) = 3∕4, (13)

𝑙𝑚({𝑡1}) = 4∕7, 𝑃 𝑙𝑚({𝑡2}) = 3∕7. (14)

Then we have

𝑆 (𝑃 𝑙𝑚(𝑡𝑖)) = −4∕7 log (4∕7) − 3∕7 log (3∕7) ≈ 0.985228. (15)

Finally, the result of the proposed IVMF is

𝐻𝐼𝑉 ′−𝑃𝑇𝑀 =
√

𝐻𝐼𝑉 ⋅ 𝐸𝑆 (𝑃 𝑙𝑚(𝑡𝑖)) ≈ 1.825299. (16)

Fig. 2 illustrates the splitting and calculation process of 𝐻𝐼𝑉 ′−𝑃𝑇𝑀 .
otted green arrows denote the splitting process of information volume
f mass function and plausibility transformation method, while solid
lue arrows indicate the calculation of 𝐻𝐼𝑉 and 𝐸𝑆 (𝑃 𝑙𝑚(𝑡𝑖)). The magni-
ude of 𝐻𝐼𝑉 and 𝐸𝑆 (𝑃 𝑙𝑚(𝑡𝑖)) are indicated in the figure using the lengths
f the orange and cyan line segments, respectively. In the dashed circle
ith 𝐻𝐼𝑉 + 𝐸𝑆 (𝑃 𝑙𝑚(𝑡𝑖)) as the diameter, the magnitude of 𝐻𝐼𝑉 ′−𝑃𝑇𝑀

an be calculated by using the similarity of triangles in Eq. (17):
|𝐻𝐼𝑉 |

|𝐻𝐼𝑉 ′−𝑃𝑇𝑀 |

=
|𝐻𝐼𝑉 ′−𝑃𝑇𝑀 |

|𝐸𝑆 (𝑃 𝑙𝑚(𝑡𝑖))|
⇒ 𝐻𝐼𝑉 ′−𝑃𝑇𝑀 =

√

𝐻𝐼𝑉 ⋅ 𝐸𝑆 (𝑃 𝑙𝑚(𝑡𝑖)). (17)

Property 1. The proposed method can be regarded as a geometric mean
of first-order and higher-order of IVMF.

Example 2. Given a FOD: 𝛩 = {𝑡1,𝑡2,… , 𝑡𝑛}, a BPA is defined as:

({𝑡𝑖}) = 1∕𝑛, 𝑖 = 1, 2,… , 𝑛.

hen, the uncertainty in Example 2 is calculated as 𝑛 increases from 1
o 11.

This example examines the suitability of the proposed approach
hen mass functions degenerate into a probability distribution. Table 2
4

elineates the uncertainty measures’ outcomes for the BPAs. Further-
ore, Fig. 3 visually depicts the trends of distinct uncertainty methods
ith changing 𝑛 to provide a clear illustration.

Fig. 3 shows that the extent of uncertainty as quantified by Weighted
Hartley entropy (Higashi & Klir, 1982) is always equal to 0, which

eans that this uncertainty measure is not valid in a probability
istribution. One interesting point is that the result of Yang and Han’s
easure (Yang & Han, 2016), its result rises at first and then becomes

maller as 𝑛 increases, which is counterintuitive. It can be explained
rom its formula: as the FOD increases, the mass function of each focal
lement decreases, resulting in a narrower belief interval assigned to
ach element and thus a smaller result.

Except for the two methods mentioned above and Deng’s mea-
ure (Deng, 2018), all the uncertainty measures obtain the same result
s Shannon entropy does. Therefore, the proposed method is acceptable
hen BPAs degenerate into a single focal element.

roperty 2. When the mass functions degenerate to a probability distribu-
ion, the proposed method degenerates to Shannon entropy.

xample 3. Consider a FOD: 𝛩 = {𝑡1, 𝑡2,… , 𝑡𝑛}, the mass function is
given as 𝑚({𝑡1, 𝑡2,… , 𝑡𝑛}) = 1, with 𝑛 grows from 1 to 11.

Fig. 4 shows the results of the uncertainty measures of the mass
function. The results demonstrate that when a total uncertainty mass
function is given, Hohle’s (Höhle, 1982) and Yager’s measures (Yager,
2008) are always equal to 0, while the methods proposed by Yang and
Han (2016) and Higashi and Klir (1982) have a slight increase at the
beginning, following by a decreasing growth rate as 𝑛 increases, and
finally slowly become a curve with a gradually decreasing slope.

As for the proposed method, the results are slightly higher than
the Deng entropy (Deng, 2016) when 𝑛 is very small. However, as 𝑛
increases continuously, the uncertainty obtained by Deng entropy is
higher than the former. This is also reasonable because when the 𝑛 is
big enough, a small increase of 𝑛 would not make a huge difference.
For example, when 𝑛 is set to 1000 and 1001, a small change in the
FOD does not result in a noteworthy difference in total uncertainty of
mass function, especially in the case of vacuous BPA.
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a

Fig. 2. The splitting and calculation process of 𝐻𝐼𝑉 ′−𝑃𝑇𝑀 in Example 1.
Fig. 3. The results of Example 2.
Another noticeable difference is that the IVMF proposed by Deng
nd Deng (2021) shows a much higher uncertainty as 𝑛 increases. It
5

means the proposed method entails a higher degree of consideration of
additional information in the FOD. However, it can be seen from the



Expert Systems With Applications 237 (2024) 121663J. Zhou et al.

𝑚

𝑚

Table 2
The results of Example 2 when 𝑛 changes from 𝑛 = 1 to 𝑛 = 7.

UM Hohle’s (Höhle, 1982) Hartley entropy (Higashi &
Klir, 1982)

Yager’s (Yager, 2008) Yang and Han’s (Yang
& Han, 2016)

JS entropy (Jiroušek &
Shenoy, 2018)

n = 1 0.0000 0.0000 0.0000 0.0000 0.0000
n = 2 1.0000 0.0000 1.0000 0.5000 1.0000
n = 3 1.5850 0.0000 1.5850 0.4226 1.5850
n = 4 2.0000 0.0000 2.0000 0.3386 2.0000
n = 5 2.3219 0.0000 2.3219 0.2789 2.3219
n = 6 2.5850 0.0000 2.5850 0.2362 2.5850
n = 7 2.8074 0.0000 2.8074 0.2046 2.8074

UM SU measurement (Wang &
Song, 2018)

Deng’s measure (Deng,
2018)

Deng entropy (Deng,
2016)

𝐻𝐼𝑉 (Deng, 2020a) 𝐻𝐼𝑉 ′−𝑃𝑇𝑀
(proposed method)

n = 1 0.0000 0.0000 0.0000 0.0000 0.0000
n = 2 1.0000 0.5858 1.0000 1.0000 1.0000
n = 3 1.5850 0.7639 1.5850 1.5850 1.5850
n = 4 2.0000 0.8377 2.0000 2.0000 2.0000
n = 5 2.3219 0.8769 2.3219 2.3219 2.3219
n = 6 2.5850 0.9010 2.5850 2.5850 2.5850
n = 7 2.8074 0.9172 2.8074 2.8074 2.8074
Fig. 4. The results of Example 3.
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image that the slope of the curve of this method is almost constant
as 𝑛 increases, and in contrast, our proposed method is much more
reasonable.

Example 4. Let 𝛩 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} be the FOD. There exists two BPAs:

1({𝑡1}) = 1∕4, 𝑚1({𝑡2}) = 1∕4, 𝑚1({𝑡1, 𝑡2}) = 1∕2,

2({𝑡1}) = 1∕4, 𝑚2({𝑡2}) = 1∕4, 𝑚2({𝑡3, 𝑡4}) = 1∕2.

From the view of BPA, the FOD of these two mass functions 𝑚1 and
𝑚2 are 𝛩1 = {𝑡1, 𝑡2} and 𝛩 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}, respectively. This is the case
when the FOD is inconsistent with each other. Uncertainty obtained by
existing methods and the proposed method is shown in Fig. 5.

Intuitively, the uncertainties of 𝑚1 and 𝑚2 are different in this given
FOD. Although the values of the two BPAs are the same, the uncertainty
should be smaller for 𝑚 than for 𝑚 . From the results in Fig. 6, only
6

1 2 h
ager’s measure (Yager, 2008), Hohle’s measure (Höhle, 1982), JS
ntropy (Jiroušek & Shenoy, 2018), SU measurement (Wang & Song,
018), as well as 𝐻𝐼𝑉 ′−𝑃𝑇𝑀 reflected this result correctly, and the other
ntropy and methods did not get the correct result. Thus, when the
PAs values are the same, but the focal elements are different, the
roposed method can correctly represent the differences and obtain
ntuitive results as JS entropy does.

The corresponding probability distribution of PPT and PTM in Ex-
mple 4 are shown in Eqs. (18) and (19), respectively. Since probability
ransformation methods can be regarded as non-specificity loss (Zhou &
eng, 2022a), this method of equally assigning probability assignments
ppears to lead to a greater loss of non-specificity when a greater
roposition is assigned to {𝑡3, 𝑡4}, because intuitively 𝑡3 and 𝑡4 have a
igher probability. Thus, PTM is used as our probability transformation
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𝑚

Fig. 5. The results of Example 4.
method in the proposed method instead of PPT.

𝑚2({𝑡1}) =𝑚2({𝑡2}) = 𝑚2({𝑡3}) = 𝑚2({𝑡4}) = 1∕4, (18)

𝑚2({𝑡1}) =𝑚2({𝑡2}) = 1∕6, 𝑚2({𝑡3}) = 𝑚2({𝑡4}) = 1∕3. (19)

Example 5. Similar to Example 4, Let 𝛩 = {𝑡1, 𝑡2, 𝑡3, 𝑡4} be an FOD.
iven two BPAs:

1({𝑡1, 𝑡2}) = 0.3, 𝑚1({𝑡3, 𝑡4}) = 0.7,

𝑚2({𝑡1, 𝑡2}) = 0.3, 𝑚2({𝑡2, 𝑡3}) = 0.7.

Example 5 is also used to test the discord and non-specificity mea-
sured by some existing entropy and methods as well as the proposed
method when the FOD obtained from the BPAs is inconsistent. The
cardinality of the mass function is set to the same to distinguish from
Example 4. The results are shown in Fig. 6.

Among these 10 uncertainty measures listed in Fig. 6, only
𝐻𝐼𝑉 ′−𝑃𝑇𝑀 , as well as JS entropy (Jiroušek & Shenoy, 2018) and
SU measurement (Wang & Song, 2018), shows a lower uncertainty
in the second case, which is coherent with intuitive. The remaining
uncertainty measures cannot reflect this fact correctly and get the same
result in these two BPAs.

As seen from Examples 4 and 5, when the FOD obtained from the
mass functions is inconsistent, this inconsistency may be either with
the given FOD or with the FOD obtained from different mass functions,
leading to counterintuitive uncertainty. However, the proposed method
can effectively and correctly obtain intuitive results.

Property 3. Compared with the existing IVMF, the proposed method can
get natural outcomes when the FOD conflict with each other.

Example 6. This example is adapted from Deng (2020b) and used
for testing the uncertainty as the discord and non-specificity changes.
Let 𝛩 = {𝑡1, 𝑡2,… , 𝑡15} be the FOD which contains 15 elements. A mass
function is defined as

𝑚({𝑡 , 𝑡 , 𝑡 }) = 0.15, 𝑚({𝑡 }) = 0.05, 𝑚(𝑇 ) = 0.7, 𝑚({𝛩}) = 0.1,
7

4 5 6 3
Table 3
Results of Deng entropy, IVMF, and the proposed method in Example 6.

Cases Deng entropy
(Deng, 2016)

𝐻𝐼𝑉
(Deng, 2020a)

𝐻𝐼𝑉 ′−𝑃𝑇𝑀

T = {𝑡1} 3.2401 6.2753 4.6639
T = {𝑡1 , 𝑡2} 4.3496 8.6745 5.3973
T = {𝑡1 , 𝑡2 , 𝑡3} 5.2053 10.8043 5.9756
T = {𝑡1 ,… , 𝑡4} 5.975 12.8353 6.4663
T = {𝑡1 ,… , 𝑡5} 6.7081 14.8195 6.9393
T = {𝑡1 ,… , 𝑡6} 7.4242 16.7791 7.4002
T = {𝑡1 ,… , 𝑡7} 8.1322 18.7253 7.9121
T = {𝑡1 ,… , 𝑡8} 8.8362 20.6638 8.4084
T = {𝑡1 ,… , 𝑡9} 9.5382 22.5979 8.8906
T = {𝑡1 ,… , 𝑡10} 10.2391 24.5296 9.3602
T = {𝑡1 ,… , 𝑡11} 10.9396 26.4598 9.8182
T = {𝑡1 ,… , 𝑡12} 11.6399 28.3893 10.2654
T = {𝑡1 ,… , 𝑡13} 12.34 30.3182 10.7026
T = {𝑡1 ,… , 𝑡14} 13.0401 32.247 11.1305

where 𝑇 is a variable subset of 𝛩 with only one element with its
cardinality increasing from 1 to 14. Namely, the number of the elements
of 𝑇 is changing from 1 to 14 by adding element 𝑡1, 𝑡2,… , 𝑡14 to 𝑇 .

When 𝑇 changes, uncertainty measured by given uncertainty mea-
sures is shown in Fig. 7. Table 3 shows the results between Deng
entropy (Deng, 2016), IVMF (Deng, 2020a), and the proposed method.

As seen from Fig. 7, Yager’s (Yager, 2008) and Hohle’s measures
(Höhle, 1982) decline as the cardinality of 𝑇 rises, which contradicts
the intuition that as 𝑇 increases, uncertainty also increases.

It is reasonable that the uncertainty of BPA increases as the cardi-
nality of 𝑇 grows, for the fact that 𝑇 gradually intersects with other
propositions, which adds the uncertainty intuitively.

Table 3 shows different results among the three measures. The two
kinds of information volume give a higher value of Deng entropy (Deng,
2020a), this is reasonable since the two measures consider a higher
order of information. However, as the cardinality of 𝑇 increases, the
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Fig. 6. The results of Example 5.

Fig. 7. The results of Example 6.
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Fig. 8. The development of complications detection on patient 𝐴,𝐵.
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esults given by the proposed measure are less than Deng entropy, this
an also be explained in Example 3. When the cardinality of 𝑇 is small,
ts elements have no intersection with other propositions, resulting in
higher uncertainty than Deng entropy.

. Application in threat assessment

In this section, the proposed method will be applied to disease threat
ssessment to illustrate the performance of the proposed method.

.1. Problem statement

Human immunodeficiency virus (HIV) causes defects in the human
mmune system and is also known as the Acquired Immunodeficiency
yndrome (AIDS) virus. AIDS is a major global public health issue.
IV infection destroys the body’s immune system, leading to various
omplications and ultimately the death of the infected individuals. The
orld Health Organization (WHO) classifies HIV into four stages, with
ost immunodeficiency-related complications occurring in the last two

tages.
Suppose two HIV patients, 𝐴 and 𝐵, arrive at the hospital, both

n the third stage of HIV. Initially, there are no evident complica-
ion symptoms in the patients, and complications may have similar
ymptoms. The diagnostic instruments can only provide an estimated
robability of a patient experiencing a particular symptom. For con-
enience, 𝑡1, 𝑡2, 𝑡3, 𝑡4 are used to represent the four major common
omplications, and it is assumed that these four symptoms have the
ame severity. The higher the number of complications that a patient
xperiences, the greater the threat level of HIV in their body. The
hreat degree of a specific symptom is considered as the probability of
iagnosing that symptom, which can be represented by a mass function
∶ 𝐵𝑃𝐴({𝑡1, 𝑡2, 𝑡3, 𝑡4}) → [0, 1]. For example, assume that the initial

omplications probabilities for patients 𝐴 and 𝐵 are represented by 𝑚𝐴
nd 𝑚𝐵 , respectively.

𝑚𝐴 ∶ 𝑚𝐴({𝑡1, 𝑡2}) =0.7, 𝑚𝐴({𝑡1, 𝑡3}) = 0.3, (20)

𝐵 ∶ 𝑚𝐵({𝑡1, 𝑡2}) =0.7, 𝑚𝐴({𝑡3, 𝑡4}) = 0.3. (21)

𝑚𝐴 and 𝑚𝐵 indicate that patient A has a 70% chance of being
iagnosed with complication 𝑡1 or 𝑡2, and a chance of 30% to be

diagnosed with complication 𝑡1 or 𝑡3. And patient B has a chance of
70% to be diagnosed with complication 𝑡1 or 𝑡2 due to some suspicious
symptoms, and 30% of being diagnosed with complication 𝑡3 or 𝑡4 due
to other symptoms.

After a period of treatment and observation, the symptoms keep
developing and are clearer, and finally, these mass functions will
degenerate to probability distributions. The entire developing process
9

is shown in Fig. 8. B
Table 4
The magnitude of mass functions 𝑚𝐴 and 𝑚𝐵 in different situations, where 𝑚({𝑡1 , 𝑡2}) =

𝐴({𝑡1 , 𝑡2}) = 𝑚𝐵 ({𝑡1 , 𝑡2}).
𝑚({𝑡1 , 𝑡2}) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝑚𝐴({𝑡1 , 𝑡3}) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
𝑚𝐵 ({𝑡3 , 𝑡4}) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

5.2. A possible physical explanation of IVMF

The threat ranking should be proportional not only to the number
of complications, but also to the uncertainty in diagnosing the compli-
cations. Obviously, the information volume of mass function is suitable
to quantify the severity here. A higher information volume indicates a
more serious threat.

Now the question is how to measure the information volume of
a certain period at time point 𝑆0 ? For a certain time point on the
imeline, uncertainty can be measured by uncertainty measures. But
hen it comes to covering a period of time, most of them may be
nsuitable. Since the fractal idea of continuously splitting mass function
nto its power set simulates the evolution of BPA (Zhou & Deng,
022b), the splitting process of IVMF can be regarded as splitting time
nto numbers of segments to measure the information volume of a
ertain period. Thus, splitting-based uncertainty measures like IVMF
re efficacious here.

Intuitively, the symptom is clearer as time goes by, which means
he proportion of compound elements decreases, while the proportion
f single focal elements increases, and this can be expressed by the
plitting process. Fig. 9 illustrates this idea.

Based on the above, IVMF and the proposed method can be applied
o disease threat assessment.

.3. Experiment and results

To better explore how changes in the probability of symptom diag-
osis affect the threat assessment of the disease, the mass functions 𝑚𝐴

and 𝑚𝐵 in the initial stage are set to different values and analyzed. The
values and results are shown in Table 4 and Fig. 10.

As shown in Fig. 10, as the magnitude of 𝑚({𝑡1, 𝑡2}) increases,
oth IVMF and the proposed method will first increase, reaching a
aximum value at 𝑚({𝑡1, 𝑡2}) = 0.5, and then will decrease. This can be

xplained by the fact that when the magnitude of each BPA is the same,
he patients 𝐴,𝐵 have a maximum chance of being diagnosed with a
aximum number of complications. Besides, all four broken lines in

he line chart are symmetric about 𝑚({𝑡1, 𝑡2}) = 0.5, this is intuitive
ince the cardinality of elements in each BPA is the same. Unlike Deng
2020a)’ s IVMF whose results are consistent between patient 𝐴 and
atient 𝐵, the proposed method can perform a better threat assessment.

ecause intuitively the more complications the patient is diagnosed
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Fig. 9. The splitting process of mass function on patient 𝐵.
Fig. 10. Disease threat assessment obtained by IVMF (𝐻𝐼𝑉 ) and the proposed method (𝐻𝐼𝑉 ′−𝑃𝑇𝑀 ). Superscript (𝐴) and (𝐵) refer to patient 𝐴 and 𝐵, respectively.
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ith, the higher risk the person is. Moreover, the difference between
(𝐴)
𝐼𝑉 ′−𝑃𝑇𝑀 and 𝐻 (𝐵)

𝐼𝑉 ′−𝑃𝑇𝑀 reaches its maximum at 𝑚({𝑡1, 𝑡2}) = 0.5.
his is consistent with intuition because patient 𝐵 always has a greater
robability of being diagnosed with more complications, which reaches
ts maximum at 𝑚({𝑡1, 𝑡2}) = 0.5.

Apart from that, other uncertainty measures mentioned previously
re also compared with the proposed method. Noting that these mea-
ures are different from IVMF, which measures uncertainty using the
plitting method to simulate the evolution of BPA as time goes by, while
hey may not reflect this feature correctly, some of them do obtain
ntuitive results.

As shown in Fig. 11, when the magnitude of 𝑚𝐴({𝑡1, 𝑡2}) increases,
artley entropy (Higashi & Klir, 1982), Yang and Han’s measure (Yang
Han, 2016), and Deng’s measure (Deng, 2018) hardly or even not

eflect this change, while other methods listed in the legend catch it
xactly. Moreover, when applying these methods to both patients A and
, the IVMF proposed by Deng (2020a), as well as Deng entropy (Deng,
016), cannot distinguish between A and B, which is counterintu-
tive. Although other methods such as Hohle’s measure (Höhle, 1982),
ager’s measure (Yager, 2008), JS (Jiroušek & Shenoy, 2018) and
10

U (Wang & Song, 2018) mirror this difference due to incomplete FOD, w
heir calculation process do not contain explainable physical meaning
s the proposed method does (see Fig. 12).

In general, this section can be concluded that:

• Uncertainty measures based on the splitting method can be used
for measuring the information volume of a certain period.

• Compared with the existing IVMF, the proposed method can
perform a better threat assessment when the FODs in different
mass functions are inconsistent.

• The calculation process of the proposed method reflects the eval-
uation of BPAs as time goes by.

. Conclusion

Information volume, or Shannon entropy, is an established metric
n probability theory used to determine the amount of information
ontained within a probabilistic event or probability distribution. To
uantify the uncertainty of a mass function within a power set, Deng
2020a) proposed the information volume of mass function (IVMF)
ased on Deng entropy (Deng, 2016). While sharing some properties

ith Shannon entropy for certain cases, the existing IVMF proves
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Fig. 11. Results obtained by the proposed method (𝐻𝐼𝑉 ′−𝑃𝑇𝑀 ) and other uncertainty methods in disease threat assessment of patient A.
Fig. 12. Results obtained by the proposed and other methods in disease threat assessment of patients A and B.
nreasonable under some circumstances, e.g. for two basic probability
ssignments (BPAs) with a distinct frame of discernment (FOD). To
ddress this issue, an improved IVMF is presented in this paper. The
roposed measure can be regarded as a geometric mean of first-order
nformation volume and higher-order information volume. When BPA
11
degenerates to a probability distribution, the proposed method can
degenerate to Shannon entropy. This paper presents several numer-
ical examples to demonstrate that the proposed approach effectively
addresses the issue of inconsistency of the FOD in BPA. Furthermore,
a comparative analysis is conducted on several other extant measures
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of uncertainty. The result in these numerical examples shows the
rationality and efficacy of the proposed method as a veritable measure
of uncertainty. And eventually, the proposed method is validated in the
real-world application of threat assessment.
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