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Abstract

The Random Permutation Set (RPS) is a recently proposed new type of set,
which can be regarded as the generalization of evidence theory. To measure the
uncertainty of RPS, the entropy of RPS and its corresponding maximum entropy
have been proposed. Exploring the maximum entropy provides a possible way
to understand the physical meaning of RPS. In this paper, a new concept, the
envelope of entropy function, is defined. In addition, the limit of the enwvelope
of RPS entropy is derived and proved. Compared with the existing method, the
computational complexity of the proposed method to calculate the enwvelope of
RPS entropy decreases greatly. The result shows that when the cardinality of a
RPS (marked as N) approaches to infinity, the limit form of the envelope of the
entropy of RPS converges to e- (N!)2, which is highly connected to the constant e
and factorial. Finally, numerical examples validate the efficiency and conciseness
of the proposed envelope, which provides a new insight into the maximum entropy
function.
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1 introduction

Uncertainty management is a significant issue that has attracted a lot of interest in
various kinds of research fields. The classical tool to deal with uncertainty is proba-
bility theory (Jaynes, 2003), which allocates the probability distribution defined in a
mutually exclusive event space. However, a particular challenge arises when uncertain
information needs to be defined on the power set of the event space, which cannot
be effectively handled by probability theory. To address this issue, Dempster-Shafer
evidence theory (DSET) (Dempster, 2008; Shafer, 1976) is developed. DSET general-
ized probability theory by extending the probability distribution to a mass function
defined on the collection of all possible subsets. As a result, this extension enabled
the application of DSET to domains characterized by a high degree of complexity
and uncertainty (Xiao, 2023; Chen and Deng, 2024). But both theories overlook the
significance of considering ordered information in processing uncertain information
This aspect, however, holds substantial importance and should not be ignored. Thus,
Deng (2022) proposed the random permutation set (RPS), considering the ordered
information while fully compatible with DSET and probability theory.

To measure the uncertainty, Shannon entropy (Shannon, 1948) is used in proba-
bility theory. In DSET, Deng (2016) proposed Deng entropy. In RPS, Chen and Deng
(2023) proposed RPS entropy. Each entropy offers an efficient approach to understand-
ing uncertainty. The maximum entropy principle was extensively studied by Jaynes
(1957, 1982). The principle asserts that the distribution with the maximum entropy
is the most appropriate representation of a system’s current state. For convenience,

this paper defines the concept of envelope for entropy. It refers to the function inside
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Fig. 1 The connection between Shannon entropy (Shannon, 1948), Deng entropy (Deng, 2016), and
RPS entropy (Chen and Deng, 2023). The envelope is the function in the logarithmic function in
maximum entropy expression.
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the logarithmic function in the overall entropy expression for the maximum entropy
case of a system. This concept becomes particularly significant when considering spe-
cific examples or scenarios. For instance, in a thermodynamic system, the envelope of
entropy can represent the range of possible energy states that lead to the highest level
of disorder or randomness. Understanding the envelope of entropy provides valuable
insights into the behavior and characteristics of the system under consideration. As
shown in Fig. 1, for a sample space whose cardinality is IV, the envelope of Shannon
entropy of a probability distribution is N, while in a power set whose maximum car-
dinality of its subsets is N, the envelope of Deng entropy is 3V — 2V. Although the
analytical expression of the envelope of RPS entropy is given by Deng and Deng (2022),
its computational and expression complexity makes it difficult and inconvenient to
discuss the properties and its physical meaning of maximum RPS entropy.

To address this issue, the limit form of the envelope of RPS entropy is presented
and proved in this paper. The limit e- (N!)? is very concise and related to the natural
constant e and factorial, whose physical meaning may be an interesting topic in future
research. Besides, numerical analysis validates the conciseness and correctness of the

result.



The remainder of this paper is structured as follows. First, Sec. 2 introduces pre-
liminary information and definitions related to the work. Next, Sec. 3 presents the
definition and an illustrative example of the concept of envelope. After that, Sec. 4
provides and proves the limit form of the entropy envelope for the RPS entropy. To
supplement this theoretical analysis, Sec. 5 then gives a comparative analysis between
three types of maximum entropies. Finally, Sec. 6 summarizes the key conclusions of

the paper.

2 Preliminaries

Some preliminaries are introduced in this section.

2.1 Mass function in power set

To better model and reason uncertainty in the real world, many theories and
approaches have been proposed to address this issue, among which Dempster-Shafer
evidence theory (DSET) (Dempster, 2008; Shafer, 1976) is an effective method for
uncertainty reasoning and information fusion, which also allows one to generate infor-
mation measures for uncertainty quantification (Contreras-Reyes and Kharazmi, 2023;

Kharazmi and Contreras-Reyes, 2024, 2023).

2.1.1 Power set

Let  be the frame of discernment (FOD), expressed as Q@ = {x1, x2,--., X~ }, whose
elements are mutually exclusive and exhaustive. Its corresponding power set 2

contains all the subsets of 2, denoted as

29 = {07 {X1}7 {X2}7 R {XN}v {XLXQ}’ {XlaX3}7 R Q} (1)



The cardinality of 2 is 2V where N is the cardinality of , and this is highly
related to the Sierpinski gasket, a recent study proposed by Zhou and Deng (2023)also

reveals this connection.

2.1.2 Mass function

The mass function or basic probability assignment (BPA), is a mapping .# : 2 —

[0,1] (Dempster, 2008; Shafer, 1976) with bound conditions:
AMWD) =0, > (M) =1 (2)

2.2 Deng entropy

To measure the uncertainty of a given system, numerous methodologies and entropy
measures have been proposed. Among these, Deng entropy (Deng, 2016) has faced
criticism (Abellan, 2017; Moral-Garcia and Abelldn, 2020); however, it continues to
flourish in various domains and theoretical frameworks, including prior distributions
(Li and Xiao, 2023), linearity phenomena Zhao et al. (2024a), interactive systems
(Wang et al., 2024), and game theory (Chen et al., 2024). Furthermore, it has inspired
the development of alternative information measures (Contreras-Reyes and Kharazmi,

2023; Kharazmi and Contreras-Reyes, 2024, 2023).

2.2.1 Deng entropy

Given a mass function . (29), Deng entropy (Deng, 2016) is defined as

A (M)
21Mi| — 17

Hppni (M) = — Z M (M;)log (3)
M.

€29

where |M;| is the cardinality of M;. When the element in each mass function is a

singleton set, i.e. VM; € 2% |M;| = 1, then Deng entropy degenerates into Shannon



entropy (Shannon, 1948):

Hpni(P) = = Y pilog(pi). (4)
piEP

Theorem 1 (Maximum Deng entropy (Kang and Deng, 2019)). Given a FOD Q, the

maximum Deng entropy Hy.:pent can be obtained when its mass function has

the following form:
olMi| _ 1
Z M| —1° (5)

MiGQQ

M (M;) =

Its corresponding Deng entropy reaches its mazimum:

M (M;
HMaxDEnt - Z %(Ml) logﬁ
M; €29
= log Z (21Mil 1), (6)
Mi€29

2.3 Random Permutation Set

Random Permutation Set (RPS) has been presented as a means to manage
uncertainty with ordered information (Deng, 2022). RPS entails permuting items in
a given set, allowing for effective handling of uncertainty in ordered data. Based on
the above, some works like reasoning under the framework of RPS (Deng et al., 2024.
DOT: 10.1109/TPAMI.2024.3438349), fusion order (Zhou et al., 2024; Wang et al.,
2024), generalized information entropy (Zhan et al., 2024), and random walk model
(Zhou et al., 2024b) are developed. To better illustrate our work, some fundamental

definitions of RPS are introduced briefly here.



2.3.1 Permutation Event Space (PES)

Given a finite set with N elements Q = {x1, x2,-..,Xn~}, its Permutation Event
Space (PES) (Deng, 2022) is a ordered set containing all possible permutations of

all subsets of 2, and is given by

PES(Q)={M;;|i=0,...,N;j=1,..., Ay}
={0,(x1)» (x2),---, (xav)» (xas x2) 5
(X2, X1) - (XN=1,XN) s (XN, XN=1) 5

"'7(XlaX?a"'7XN)7"'7(XN7XN*13"'7X1)}7 (7)

where Ay = N!/(N —i)! is the number of choices to select i ordered elements from
a collection with N elements. The element M, ; is called permutation event.
2.3.2 Random Permutation Set (RPS)

Given a finite set with N elements Q = {x1, x2,.-., X~ }, its Random Permutation

Set (RPS) (Deng, 2022) is a set of pairs given by

RPS(Q) = {{(M; j, M(M, ;)) | M; ; € PES(Q)}, (8)

where M is called permutation mass function (PMF), a mapping PES(Q)) —

[0, 1] with bound conditions



RPS is completely consistent with DSET and probability theory. When the order
of elements within PES is disregarded, PES effectively becomes a power set, while the
PMF within RPS reduces to the mass function. Moreover, if each permutation event
contains only a singular element, RPS simplifies into probability theory, wherein PES
degenerates into the sample space. Fig. 2 illustrates the connection between RRS,

DSET, and probability theory.

Exclusive Nonexclusive + Order Nonexclusive
Sample Space PO SR Power Set
Space
Probability Permutation Mass .
Distribution Function Mass Function
Shannon Entropy RPS Entropy Deng Entropy
Probability Only singleton RPS Element's order is Evidence
Theon " element in PES ignored in PES i Theory

Fig. 2 The relationship between RPS, DSET and probability theory.

To ascertain the degree of uncertainty in RPS, the entropy of RPS, as introduced
by Chen and Deng (2023), plays a significant role, exhibiting compatibility with both

Deng entropy and Shannon entropy.

2.3.3 RPS entropy

For a RPS RPS(Q) = {(M;;, M(M,;)) | M;; € PES(Q)}, defined on a PES:
PES(Q) ={M;;|i=0,...,N;j=1,..., A% }, the entropy of RPS (Chen and Deng,
2023) is defined as



N Aﬁ\, .
Hrpspnt(M) = — ZZM (Mi;)log (W) 7 1o

i=1 j=1

where S4 (i) = aio Al = azi:() (2_’—;), is the sum of all possible permutations of a finite
set containing ¢ elements.

Though the entropy of RPS is introduced, there is a lack of in-depth analysis
regarding its maximum entropy. To address this issue, Deng and Deng (2022) presented
an analytical expression for the maximum entropy of RPS as well as its corresponding
PMF condition.

Understanding the maximum RPS entropy is crucial as it represents the state
of maximum uncertainty within the framework, providing an important theoretical
boundary for uncertainty quantification. This maximum value serves as a reference
point for comparing different RPS configurations, and helps establish the framework’s
capacity for uncertainty representation. The following theorem presents this maximum
value and its corresponding conditions.

Theorem 2 (Maximum RPS entropy (Deng and Deng, 2022)). Given a PES:
PES(Q) = {M” |i=0,....,N;5=1,... ,A}\,}, if and only if its PMF satisfies

Sa(i)—1 '
S [AN(Sal) — 1)

Then the entropy of RPS reaches its mazimum:

M(M; ;) = (11)

N
HMamRPS = 10g <Z [AﬁV(SA(Z) - 1)]) . (12)

=1
3 The envelope of entropy

In this section, the definition of the envelope of entropy is given, followed by an example

as an illustration.



Within a system, the value of entropy can vary across multiple situations. In
this context, the envelope of entropy refers to the function encapsulated within the

logarithmic expression of entropy that reaches its maximum value.

3.1 The definition of envelope of entropy

For a given definition of entropy Hg,: = E(—log(f(P))), where P is a belief assign-
ment within a system S and E(X) is the mathematical expectation of X. Then the

envelope of Hg,; can be defined as

HMamEnt - r‘gg‘}s( [E(f log(f(P)))} ) (13)
Oe(HEnt) = eXp(HMarEnt>7 (14)

where Hpjqppn: 1s the maximum entropy for a given system, and C. is the envelope
of a given entropy Hpp:.

To illustrate the practical application of this theoretical framework, we examine
two fundamental entropy measures. This example aims at demonstrating how the
envelope concept manifests in both classical entropy in information theory and its
modern extensions to uncertainty quantification, providing concrete insights into the
behavior of entropy across different mathematical structures.

Example 1 (The envelope of Shannon entropy and Deng entropy). Given a finite set

Q={x1,x2,---, XN}, we compute

1. the envelope of Shannon entropy (Shannon, 1948);

2. the envelope of Deng entropy (Deng, 2016) in power set 2.

For a finite set {2, Shannon entropy reaches its maximum when the probability

distribution is uniform, i.e. P(x;) = 1/N. Then Eq.(4) can be rewritten as

Hspni(P) = log(N). (15)

10



Based on Eq.(14), the envelope of Shannon entropy is

C.(Hs) = exp (log(N)) = N. (16)

If the mass function satisfies (Kang and Deng, 2019)

_ 2|JV[1-| -1
T S areon 2 -1

then Deng entropy reaches its maximum, which can be simplified as (Qiang et al.,

A (M;)

(17)

2023)

M (M;
HyfazpEnt = Y %(Mi)log#
MiEQQ
= log Z (21M:l 1)
M;e2%

N
~ log (Z (O3 (2 — 1)))

a=0
=log (3% —2V), (18)

where C% = N!/[(N — a)! - al] is the combination number.

Based on Eq.(14), the envelope of Deng entropy is

Ce(Hppgnt) = exp (log (3% —2V)) =3V — 2V, (19)

As shown in Fig. 3, given a uniform probability distribution, Hsg,: reaches its
maximum log(NV), then the envelope of Hggye is N. When the mass function satisfies
M(M;) = 21Ml — L/ ar,con 2IMil 1], Hp gt reaches its maximum: log (3N —2N),

then the envelope of Hpgny is (3N - 2N).

11
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Fig. 3 The envelope of Shannon entropy, Deng entropy and RPS entropy.

The preceding analysis demonstrates how the envelope concept manifests among
Shannon entropy, Deng entropy and RPS entropy, revealing their distinct character-
istics in measuring uncertainty. Then we can establish a comprehensive framework
for comparing these different uncertainty measures. The following theorem formalizes
these results by presenting the analytical expressions for all three entropy envelopes
in a unified form.

Theorem 3 (Envelope of entropy). The envelope of Shannon entropy, Deng entropy,

and RPS entropy are presented as

Shannon entropy : Ce(Hsgnt) = N, (20)

Deng entropy : Co(Hppn) = 3~ — 27, (21)
N

RPS entropy : Ce(Hrpsen) = Y _ [A%(Sa(a) — 1)]. (22)
a=1

12



4 Limit of the envelope of RPS entropy

The proof of the limit of the envelope of RPS entropy is presented in this section. Let
AY; marked as the u-permutation of N, and S4(/N) marked as the sum of A%, when

u change from 0 to N. Thus

Ay = (N]i!u)!’ (23)
NN
SA(N):Z;)AN:Z;M' (24)

Lemma 1 (sum of permutation). When N > 1, S, (N) can be rewritten as

N
Sa(N)=> A% =le-N!| (N >1), (25)
u=0

where e is the nature constant and T'(N + 1,1) is the "upper” incomplete gamma

function written as
o0

MNu+1,2) = / the tdt. (26)

x

Proof of Lemma 1. For S4(N), it can be rewritten as

N N 1
Sa(N) =) A% = N! <Z w) . (27)
u=0 u=0 "

For a non-negative integer N, the ‘upper’ incomplete gamma function can be

rewritten as (Arfken et al., 2011):

oo N u

(N +1,2) = / tNe7tdt = Nle™ § ﬂ, (28)
U.
z u=0

13



Let z =1 in Eq.(28):

N

N! 1
I'(N+1 =1 = — —. 29
(¥ Lallems = 30 (29)

Combining Eq.(29) and Eq.(27), Sa(IV) can be simplified as

N

N
Sa(N) =" A% = NI <Zi'> =e-T(N+1,1). (30)
u=0 :

u=0

Since VN € Z*,u=0,1,..., N, A% is an integer, S4(N) can be simplified as

SA(N)=e-T(N +1,1) = |e- N1, (31)

where I'(N +1,1) = w (Arfken et al., 2011).

O
For convenience, let’s define a function:
N
S(N) = [A%(Sa(u) — 1)]. (32)
u=1

Then according to Theorem 2, the maximum entropy of RPS can be rewritten as

Hprazrps(N) = log S(IV). (33)

Lemma 2 (Approximation of S(N)).

N
u!
. NI - 3
e-N! (;_1: &) 2) +1< lim S(N)

N
<e-N!<Z(N7i!u)'—1>+2. (34)

u=1 :

14



Proof of Lemma 2. Based on Lemma 1 and Eq.(32), S(N) can be rewritten as

u;l N
= > A% (Sa()] - D A%
= > [A% (Sa(w)] - A% +1
u=1 u=0
N
=Syl e MU 41
o~ Le-ul
:N'; i le- N +1

Suppose that
e-ul=|e-ul|+e1, e Nl=]|e-N!|+eoq,

where €1,e2 € [0, 1).

Then Eq.(35) can be rewritten as

N'i —le- N+

S
_

N
e u'fsl
NIZ(N (e-N!l—e9)+1

u=1

[
2

7=0

N—1
Based on Eq.(27), the 1 - NI Y % in Eq.(37) can be simplified as
7=0

15

N Nl1
'(Z —1)—81 N'Z]+52+1



i
=

—1
1 1
er-NUY ﬁ:51~N~(N—1)! 5
Jj=0 j=0
=¢e1-N-e-T'(N,1)
=¢g1-e-Nl—e1e5- N, (38)
where €3 € [0,1).
Comining Eq.(37) and Eq.(38), S(IV) can be rewritten as
SV) = w1 (30— 1
(V) =e- N! ;m -
—¢e1-e-Nl4ees- N +ex+ 1. (39)

Since €1,€9,e3 € [0,1), let 1 — 1,692 = 3 = 0, a lower bound of S(V) is given by

N
S(N)>e- N! (ZMZ)H. (40)

Similarly, let e =0, e3,e3 — 1, S(IV) is no greater than the following equation:

N
S(N) <e- N! <Z (Nli'u), - 1> +2. (41)

Based on Eq.(40) and Eq.(41), Lemma 2 is proved.

16



Theorem 4 (the limit form of the envelope of RPS entropy).

N
lim  Co(Hppspn(M)) = lim Y [A%(Sa(u) - 1)]

N=oo A pES(Q)—[0,1],|0]=N N0 i—]

= lim S(N)=e- (N2 (42)
N—o00
Proof of Theorem 4. The key aspect of Theorem 4 lies in the part A}im S(N)=e-
— 00
(N1)2. According to Lemma 2, we take the limit form at both ends of Eq.(34), which

is written as

N
u'
1 - N! — 1< 1
NN (Z (N —u) 2>+ A, S)
N ul
< ! —
< lim e-N (; o 1) +2, (43)
as we can see the key component is limy_ (Zﬁ’:l(]\,“flu)!fl), or

limpy o0 (ZuN:1 (N“f'u),) more concisely.

Let N = 2k, Then (N“f'u), = % = 1. Thus, Zivzl (N’i!u)! > 1. We can rewrite this

equation as

N 1
Z (N—u)!
0< lim u=1 -1
N—+00 N!
1 3 ut 1
- Nirfoo; NIN —w)!
, N-3 U' U' .
= NS e Zl MV —w! ] " NN —a) pN_aN_LN
N-3
u! 1 1
= 1 —. 44
Nirfoo; MN—wl TaNN—1) TN (44)

17



| . . . . .
Note that m is a monotonic series that increases as wu increases. So

Zi\:lg W'—u)' is no greater than

iy u! u! 1
u; NIV —a)t S (V-2 NIN=u)!|,_y_s 6(N—-1) (45)

Based on Eq.(45), Eq.(44) can be simplified as

Nl 1 1
N ; MN—wl Tanv—) "W
< lim _IN-3
S NS4 6N(N — 1)
—0. (46)
Therefore, Eq.(44) can be simplified as
N
Zl (N —u)!
< = —1<0.
0% i 1< )
Thus, the limit form of ZuN:1 (N"f'), is
N ol
lim > = NI, (48)

18



e-(N)? < lim S(N) <e-(N!)?

N— o0

= lim S(N)=-e-(N!?. (49)

N —o0

Based on Theorem 2, Eq.(14, 32 - 33) and (49), the limit form of the envelope of

RPS entropy is proved.

lim Ce(Hrpsent(M)) = lim exp (Hprazrps)
N—=oo pm.pES(Q)—[0,1], Q=N N7

N
= lim [A%(Sa(u) — 1))
N—o0 |
= N2, 50
=e- (N2 (50)
Theorem 4 is proved. O

5 Numerical examples and discussion

This section gives some examples to demonstrate the limit discussed earlier. Further-
more, it delves into the relationship between Shannon entropy (Shannon, 1948), Deng
entropy (Deng, 2016), and RPS entropy (Chen and Deng, 2023), specifically examining
their maximum values.

As the theoretical framework established in previous sections provides powerful
insights into the behavior of different entropy measures, we begin with a numeri-
cal analysis focusing on large-scale behavior and approximation accuracy, validating
these theoretical results and gaining practical understanding of their implications. This
approach allows us to examine both the theoretical predictions and their practical

computational aspects.

19



Table 1 Value of S(N), HyrazrPsS, and their corresponding estimation Sy (N), Hrimprps with different values of
N. The error of Sijm (N), HLimrps are marked as AS, AH, respectively. While the subscripts in them indicate the
relative error or absolute error.

N S(N) Stim () ASabs ASre HpyrazrPs  HrLimrps AHgps AHq

10 3.96E+413 3.58E+13 -3.79E+12  -9.57E-02  4.52E4-01 4.50E4+01 -1.45E-01 -3.21E-03
20 1.69E4-37 1.61E4-37 -8.26E+35  -4.88E-02 1.24E4-02 1.24E4+02  -7.20E-02 -5.84E-04
30 1.98E+65 1.91E+65 -6.49E4+63  -3.28E-02  2.17TE4-02 2.17TE402  -4.80E-02 -2.22E-04
40 1.85E+96 1.81E+96 -4.58E4+94  -2.47E-02  3.20E4-02 3.20E402 -3.60E-02 -1.13E-04
50 2.57TE4+129 2.51E4129 -5.08E+127 -1.98E-02  4.30E4-02 4.30E402 -2.90E-02 -6.71E-05
60 1.91E+164 1.88E+164 -3.16E+162 -1.65E-02  5.46E402 5.46E+02 -2.40E-02 -4.41E-05
70 3.96E4200 3.90E+200 -5.61E4198 -1.42E-02  6.66E4-02 6.66E4-02 -2.10E-02 -3.09E-05
80 1.41E+238 1.39E+238 -1.75E+4236 -1.24E-02  7.91E4-02 7.91E4+02 -1.80E-02 -2.28E-05
90 6.07TE4276 6.00E+4+276 -6.70E4274 -1.11E-02  9.20E4-02 9.19E402 -1.60E-02 -1.74E-05
100 2.39E+316 2.36E+316 -2.38E4-314 -9.95E-03 1.05E+03 1.056E+03  -1.40E-02 -1.37E-05

Example 2. In this example, the comparison between the mazimum RPS entropy and
the presented limit is on a large scale. Apart from that, the errors between factorial

and its approximation—Stirling’s formula (Tweddle, 2003),

(&

Nl ~ V27N (N)N del 8, (N, (51)

are also presented here to better illustrate the presented limit.

Similar to Stirling’s formula which is regarded as an approximation of factorial,
the approximation of the envelope of RPS entropy is denoted as Sy, (N) = e - (N!)2.
The values of S(N), Hyrazrps, and their corresponding proposed estimation Sy, (N),
Hrimrps = 10g Siim(N), are listed in Tab. 1. To better illustrate the efficiency and
conciseness of the limit form of the envelope of RPS entropy, the results of factorial,
Stirling’s formula, and its absolute errors, relative errors are also listed in Tab. 2.

As shown in Tab. 1 and Tab. 2, as N increases, S(IN) and Spm(N) will grow at
a rate close to (N!)2, but both of them maintain the same number of digits. Besides,
the absolute error between Sj;,(N) and SN is roughly one-hundredth of SN,
while the absolute error between N! and Stirling’s estimation is approximately one-
thousandth of N!. When taking the logarithmic operation on them, both absolute

and relative errors are rapidly reduced to an acceptable range.

20



Table 2 Value of N! log,(N!) and its corresponding approximation using Stirling’s formula. A denotes the error,

while the texts of subscripts indicate the relative error or absolute error, respectively.

N N! St(N) ASi_abs ASi_rel log(N) log(S¢(N))  Alog;_4ps

A IOgtfrel

10 3.63E4-06 3.60E+-06 -3.01E+04  -8.30E-03 2.18E401 2.18E4-01 -1.20E-02
20 2.43E4+18 2.42E+18 -1.01E4+16  -4.20E-03  6.10E4-01 6.11E4-01 -6.01E-03
30 2.65E+32 2.65E+32 -7.36E+29  -2.80E-03 1.08E402 1.08E+02 -4.01E-03
40 8.16E+447 8.14E4-47 -1.70E4+45  -2.10E-03  1.59E4-02 1.59E+02 -3.01E-03
50 3.04E+4-64 3.04E+-64 -5.06E+61 -1.70E-03 2.14E402  2.14E4-02 -2.40E-03
60 8.32E+81 8.31E+81 -1.16E+79  -1.40E-03 2.72E402  2.72E402 -2.00E-03
70 1.20E+100 1.20E+100  -1.43E+497 -1.20E-03 3.32E+402  3.32E4-02 -1.72E-03
80 7.16E+118  T7.15E4+118 -7.45E+115 -1.00E-03 3.95E+02  3.95E+02 -1.50E-03
90 1.49E+138 1.48E+138 -1.37E+4135 -9.00E-04 4.59E402  4.59E4-02 -1.34E-03
100 9.33E+157  9.33E+157 -7.77E+154 -8.00E-04 5.25E+02  5.25E+402 -1.20E-03

Based on the above, it can be concluded that the proposed approximation to
maximum RPS entropy is near as good as Stirling’s approximation to factorial. When
considering the form, the proposed approximation is much more concise compared
with Stirling’s formula.

Having established the accuracy and efficiency of our approximation for maximum
RPS entropy, we now turn our attention to contextualizing these results within the
broader framework of entropy measures. By comparing RPS entropy with classical
Shannon entropy and Deng entropy, we can better understand its unique character-
istics and advantages in uncertainty quantification. The following example provides a
systematic comparison of these different entropy measures and their maximum values.
Example 3. Suppose a finite set with N elements: Q = {x1,x2,.-.,Xn}. Its cor-
responding sample space, power set, and the PES can be marked as Q,2%, PES(S),
respectively.

Then Hprowsent, HyaeDEnt, and Hpraorps can be obtained by the following

equations:

HMaxSEnt = 1Og(N)a (52)

HMaJ:DEnt = 10g(3N - 2N)7 (53)
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Hyrawrps = IOg(S(N)) (54)

In comparison to Hpjazrps, let’s define Hp.,rps as an approximation to

maximum RPS entropy and its relative errors, AHgrpsEn::

Hpimrps = log(e - (N1)?), (55)

H m _H ax
AHppspn = —2mBPS = ZMazRPS 4409, (56)

HyraarPs

When N increases, the different result of HpsorsEnts HyvazDEnts Hyvazrps and
Hpimrps are shown in Tab. 3 and Fig. 4. And Fig. 5 shows the relative error and
absolute error between Hy;mrps and Hrpsgnt.

As shown in Fig. 4, Hyjezrps and Hpmprps exhibit a greater slope, i.e., a higher
growth rate, than Hpyrarsen: and HarazpEnt, While HpyrezpEnt also exhibit a higher
increasing speed in comparison to Hjsq.5En:- This can be clarified through the simple
fact that the uncertainty in a finite set’s PES is substantially larger than in its power
set or sample space for a given number of elements. This is because RPS considers
all permutations of the finite set, while DSET and probability theory do not. DSET,
on the other hand, considers all potential subsets of the finite set and may thus be
considered an extension of probability theory.

By comparing Hyrazrps and Hrimrps in Tab. 3, Fig. 4 and Fig. 5, it’s clear that
when N > 7, the proposed approximation will converge to Hyjqzrps quickly. When
N > 15, the accuracy of the approximation will reach two decimal errors. Considering
the complex computational steps required by the original calculation process, this
approximation provides a more reasonable estimation of the maximum RPS entropy.
In contrast, the estimation formula of the Stirling formula for the factorial is not

concise as the proposed estimation formula for the maximum RPS entropy.
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Fig. 4 The trend of maximum Shannon entropy, Deng entropy, RPS entropy and the proposed
approximation of maximum RPS entropy when N changes.
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Fig. 5 The trend of relative error and absolute error of the proposed approximation of maximum
RPS entropy when N changes. The line chart is denoted as the relative error while the bar chart is
denoted as the absolute error.
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Table 3 The maximum Shannon entropy, Deng entropy, RPS entropy and
the presented result of limit of maximum RPS entropy with different values

of N.
N HyazseEnt  HymazDEnt  Hymazrps  Hrpimrps  AHRPsEnt
1 0.00000 0.00000 0.00000 1.44270 0.00%
2 1.00000 2.32193 3.32193 3.44270 3.64%
3 1.58496 4.24793 6.87036 6.61262 -3.75%
4 2.00000 6.02237 10.92780 10.61260 -2.88%
5 2.32193 7.72110 15.54060 15.25650 -1.83%
6 2.58496 9.37721 20.66910 20.42640 -1.17%
7 2.80735 11.00770 26.24950 26.04110 -0.79%
8 3.00000 12.62230 32.22310 32.04110 -0.56%
9 3.16993 14.22660 38.54240 38.38100 -0.42%
10 3.32193 15.82440 45.16990 45.02480 -0.32%

Example 4. In this example, the computational complexity of the envelope of RPS
entropy, as well as the presented limit, is given.

According to Theorem 3 and Eq.(31), the envelope of RPS entropy is

N
Ce(Hrpsen) = Y [A%(Sa(a) = 1)]
N
:Z[(N]i!a)!qe.au—n . (57)

The function performs a summation from a = 1 to N, resulting in N iterations
and complexity of O(N) or linear time. Within the loop, there are several operations

that need to be considered:

® The computation of N!/(N — a)! using the factorial function, which can be done in
O(N) time.

® The computation of |e- a!| using the factorial and floor functions, also taking O(a)
time.

® Subtracting 1, which is a constant time operation O(1).

® Multiplying the results of the above operations, which is also a constant time

operation O(1).
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Therefore, the operations within the loop have an asymptotic time complexity
of O(N). Since there are N iterations, the overall asymptotic complexity becomes
O(N) x O(N) = O(N?).

Regarding the presented limit of the envelope of RPS entropy Ce(iim)(HrPSEnt =
e - (n!)?, its computational complexity is clearly O(N). Considering the accuracy of
this approximation, as demonstrated in Example 3 and Example 2, the computational
efficiency gained from this approximation will be a significant advantage for future
applications. For instance, De Gregorio et al. (2022) proposed an estimation of Shan-
non entropy to quantify the memory of a given system, and (Irshad et al., 2024)

considered an estimation of weighted extropy and used it for reliability modeling.

6 Conclusion

RPS is a great extension of DSET. Though the maximum entropy of RPS is presented,
its computational complexity makes it difficult to discuss the envelope of RPS entropy.
This study addressed this issue by presenting the limit form of the envelope of RPS
entropy. The result e-(N!)? establishes a fascinating link between the natural constant
e and the factorial function, two fundamental concepts in mathematics.

In future research, there are mainly two problems. The first point of interest is
exploring the physical meaning of e-(N!)? and its potential correlation with RPS. Addi-
tionally, while an approximation of the maximum RPS entropy has been proposed,

further research is needed to explore its practical applications in specific domains.
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