习题 2-1 (P 82-84): 4.5、4.6、4.10、4.16
(P 134): 6.2、6.8
 
4.5 
    4.5
    
 
1
I ( a 1  ) = log  2  ( 0.6 ) = 0.737 bi t , I ( a 2  ) = log  2  ( 0.4 ) = 1.322 bi t 2
P ( b 1  ) = 0.6 , P ( b 2  ) = 0.4 I ( a 1  ; b 1  ) = log  2  p ( a 1  ) p ( a 1  / b 1  )  = 0.474 bi t , I ( a 1  ; b 2  ) = log  2  p ( a 1  ) p ( a 1  / b 2  )  = − 1.263 bi t I ( a 2  ; b 1  ) = log  2  p ( a 2  ) p ( a 2  / b 1  )  = − 1.263 bi t , I ( a 2  ; b 2  ) = log  2  p ( a 2  ) p ( a 2  / b 2  )  = 0.907 bi t 3
H ( X ) = H ( 0.6 , 0.4 ) = 0.971   bi t / sy mb o l H ( Y ) = H ( 0.6 , 0.4 ) = 0.971 bi t / sy mb o l 4
H ( X Y ) = H ( 0.5 , 0.1 , 0.1 , 0.3 ) = 1.685 bi t / sy mb o l H ( X / Y ) = 1.685 − 0.971 = 0.714   bi t / sy mb o l H ( Y / X ) = 0.714 bi t / sy mb o l 5
I ( X ; Y ) = 0.971 − 0.714 = 0.257 bi t / sy mb o l 
4.6 
    4.6
    
 
H ( X ) = H ( 4 1  , 4 3  ) = 0.811   bi t / sy mb o l H ( Y / X ) = i ∑  j ∑  P ( x i  ) p ( y i  / x i  ) log  P ( y j  / x i  ) = 0.92   bi t / sy mb o l P ( y 1  ) = 0.58 , P ( y 2  ) = 0.42 H ( Y ) = H ( 0.58 , 0.42 ) = 0.98   bi t / sy mb o l H ( X ∣ Y ) = H ( X ) − H ( Y ) + H ( Y / X ) = 0.75   bi t / sy mb o l I ( X ; Y ) = H ( X ) − H ( X / Y ) = 0.06   bi t / sy mb o l C = 1 − H ( 1/3 , 2/3 ) = 0.082   bi t / sy mb o l P x  = { 2 1  . 2 1  } 
4.10 
    4.10
    
 
这里不应该是 1500 symbol/s 才对么?
二元对称信道的信道容量为 C = 1 − H ( p ) = 1 − H ( 0.98 , 0.02 ) = 0.859   bi t / sy mb o l 14000 sy mb o l × H ( 2 1  ) = 14000 bi t 1500 × C × 10 = 12880 bi t 
4.16 
    4.16
    
 
α i  = { α i 1  α i 2  α i 3  } , α i t  ∈ { 0 , 1 } , i = 0 , 1 , ⋯ , 7 , t = 1 , 2 , 3 
三次扩展后信源的输入符号集为:
{ α 0  = 000 , α 1  = 001 , α 2  = 010 , α 3  = 011 , α 4  = 100 , α 5  = 101 , α 6  = 110 , α 7  = 111 } β i  = { β i 1  β i 2  β i 3  } , β i t  ∈ { 0 , 1 } , i = 0 , 1 , ⋯ , 7 , t = 1 , 2 , 3 { β 0  = 000 , β 1  = 001 , β 2  = 010 , β 3  = 011 , β 4  = 100 , β 5  = 101 , β 6  = 110 , β 7  = 111 } P ( β j  / α i  ) = P ( α i 1  / β j 1  ) ⋅ P ( α i 2  / β j 2  ) ⋅ P ( α i 3  / β j 3  ) 
方便起见,令 q = p ˉ  
 q 3 q 2 p q 2 p q 2 p q 2 p p 2 q p 2 q p 3  q 2 p q 3 q 2 p q 2 p p 2 q q 2 p p 3 p 2 q  q 2 p p 2 q q 3 q 2 p p 2 q p 3 q 2 p p 2 q  p 2 q q 2 p q 2 p q 3 p 3 p 2 q p 2 q q 2 p  q 2 p p 2 q q 2 p p 3 q 3 q 2 p q 2 p p 2 q  p 2 q p 2 q p 3 p 2 q q 2 p q 3 p 2 q q 2 p  p 2 q p 3 q 2 p p 2 q q 2 p q 2 p q 3 q 2 p  p 3 p 2 q p 2 q q 2 p p 2 q q 2 p q 2 p q 3   6.2 
    6.2
    
 
 p ( x ) = ∫ − r 2 − x 2  r 2 − x 2   p ( x y ) d y = ∫ − r 2 − x 2  r 2 − x 2   π r 2 1  d y = π r 2 2 r 2 − x 2   ( − r ≤ x ≤ r ) H c  ( X ) = − ∫ − r r  p ( x ) log  p ( x ) d x = − ∫ − r r  p ( x ) log  π r 2 2 r 2 − x 2   d x = − ∫ − r r  p ( x ) log  π r 2 2  d x − ∫ − r r  p ( x ) log  r 2 − x 2  d x = log  2 π r 2  − ∫ − r r  p ( x ) log  r 2 − x 2  d x = log  2  π r / e   bit /symbol  p ( y ) = p ( x ) H c  ( Y ) = H c  ( X ) = log  2  π r / e   bit/symbol  H c  ( X Y ) = − ∬ K  p ( x y ) log  p ( x y ) d x d y = − ∬ K  p ( x y ) log  π r 2 1  d x d y = log  π r 2 ∬ K  p ( x y ) d x d y = log  2  π r 2  bit /symbol  I c  ( X ; Y ) = H c  ( X ) + H c  ( Y ) − H c  ( X Y ) = log  2  π / e  bit /symbol   6.8 
    6.8
    
 
(1) F = 4 kHz R ≤ W log  ( 1 + N 0  W P  ) R = W log  ( 1 + N 0  W P  ) 
P m i n   = N 0  W ( 2 R / W − 1 ) = 5 × 1 0 − 6 × 1 0 − 3 × 4 × 1 0 3 × ( 2 5.6 × 1 0 4 /4 × 1 0 3 − 1 ) = 0.32766   W  (2) W → ∞ R ≤ lim W → ∞  C = N 0  l n 2 P  
P m i n   = R N 0  ln 2 = 5.6 × 104 × 5 × 106 × 103 × ln 2 = 1.941 × 104 = 0.1941   mW