习题 2-1 (P 82-84): 4.5、4.6、4.10、4.16
(P 134): 6.2、6.8
4.5
4.5
1
I ( a 1 ) = log 2 ( 0.6 ) = 0.737 bi t , I ( a 2 ) = log 2 ( 0.4 ) = 1.322 bi t
2
P ( b 1 ) = 0.6 , P ( b 2 ) = 0.4
I ( a 1 ; b 1 ) = log 2 p ( a 1 ) p ( a 1 / b 1 ) = 0.474 bi t , I ( a 1 ; b 2 ) = log 2 p ( a 1 ) p ( a 1 / b 2 ) = − 1.263 bi t
I ( a 2 ; b 1 ) = log 2 p ( a 2 ) p ( a 2 / b 1 ) = − 1.263 bi t , I ( a 2 ; b 2 ) = log 2 p ( a 2 ) p ( a 2 / b 2 ) = 0.907 bi t
3
H ( X ) = H ( 0.6 , 0.4 ) = 0.971 bi t / sy mb o l
H ( Y ) = H ( 0.6 , 0.4 ) = 0.971 bi t / sy mb o l
4
H ( X Y ) = H ( 0.5 , 0.1 , 0.1 , 0.3 ) = 1.685 bi t / sy mb o l
H ( X / Y ) = 1.685 − 0.971 = 0.714 bi t / sy mb o l
H ( Y / X ) = 0.714 bi t / sy mb o l
5
I ( X ; Y ) = 0.971 − 0.714 = 0.257 bi t / sy mb o l
4.6
4.6
H ( X ) = H ( 4 1 , 4 3 ) = 0.811 bi t / sy mb o l
H ( Y / X ) = i ∑ j ∑ P ( x i ) p ( y i / x i ) log P ( y j / x i ) = 0.92 bi t / sy mb o l
P ( y 1 ) = 0.58 , P ( y 2 ) = 0.42
H ( Y ) = H ( 0.58 , 0.42 ) = 0.98 bi t / sy mb o l
H ( X ∣ Y ) = H ( X ) − H ( Y ) + H ( Y / X ) = 0.75 bi t / sy mb o l
I ( X ; Y ) = H ( X ) − H ( X / Y ) = 0.06 bi t / sy mb o l
C = 1 − H ( 1/3 , 2/3 ) = 0.082 bi t / sy mb o l , 最佳输入分布为: P x = { 2 1 . 2 1 }
4.10
4.10
这里不应该是 1500 symbol/s 才对么?
二元对称信道的信道容量为 C = 1 − H ( p ) = 1 − H ( 0.98 , 0.02 ) = 0.859 bi t / sy mb o l
信源的信息量为 14000 sy mb o l × H ( 2 1 ) = 14000 bi t ,
10 秒内传输的信息量: 1500 × C × 10 = 12880 bi t
小于信源的信息量,所以不能在 10 秒内无失真传输完。
4.16
4.16
α i = { α i 1 α i 2 α i 3 } , α i t ∈ { 0 , 1 } , i = 0 , 1 , ⋯ , 7 , t = 1 , 2 , 3
三次扩展后信源的输入符号集为:
{ α 0 = 000 , α 1 = 001 , α 2 = 010 , α 3 = 011 , α 4 = 100 , α 5 = 101 , α 6 = 110 , α 7 = 111 }
同理,输出符号集也同样编码
β i = { β i 1 β i 2 β i 3 } , β i t ∈ { 0 , 1 } , i = 0 , 1 , ⋯ , 7 , t = 1 , 2 , 3
{ β 0 = 000 , β 1 = 001 , β 2 = 010 , β 3 = 011 , β 4 = 100 , β 5 = 101 , β 6 = 110 , β 7 = 111 }
那么 P ( β j / α i ) = P ( α i 1 / β j 1 ) ⋅ P ( α i 2 / β j 2 ) ⋅ P ( α i 3 / β j 3 )
方便起见,令 q = p ˉ
q 3 q 2 p q 2 p q 2 p q 2 p p 2 q p 2 q p 3 q 2 p q 3 q 2 p q 2 p p 2 q q 2 p p 3 p 2 q q 2 p p 2 q q 3 q 2 p p 2 q p 3 q 2 p p 2 q p 2 q q 2 p q 2 p q 3 p 3 p 2 q p 2 q q 2 p q 2 p p 2 q q 2 p p 3 q 3 q 2 p q 2 p p 2 q p 2 q p 2 q p 3 p 2 q q 2 p q 3 p 2 q q 2 p p 2 q p 3 q 2 p p 2 q q 2 p q 2 p q 3 q 2 p p 3 p 2 q p 2 q q 2 p p 2 q q 2 p q 2 p q 3
6.2
6.2
p ( x ) = ∫ − r 2 − x 2 r 2 − x 2 p ( x y ) d y = ∫ − r 2 − x 2 r 2 − x 2 π r 2 1 d y = π r 2 2 r 2 − x 2 ( − r ≤ x ≤ r ) H c ( X ) = − ∫ − r r p ( x ) log p ( x ) d x = − ∫ − r r p ( x ) log π r 2 2 r 2 − x 2 d x = − ∫ − r r p ( x ) log π r 2 2 d x − ∫ − r r p ( x ) log r 2 − x 2 d x = log 2 π r 2 − ∫ − r r p ( x ) log r 2 − x 2 d x = log 2 π r / e bit /symbol p ( y ) = p ( x ) H c ( Y ) = H c ( X ) = log 2 π r / e bit/symbol H c ( X Y ) = − ∬ K p ( x y ) log p ( x y ) d x d y = − ∬ K p ( x y ) log π r 2 1 d x d y = log π r 2 ∬ K p ( x y ) d x d y = log 2 π r 2 bit /symbol I c ( X ; Y ) = H c ( X ) + H c ( Y ) − H c ( X Y ) = log 2 π / e bit /symbol
6.8
6.8
(1) F = 4 kHz 时,实现无差错传输则 R ≤ W log ( 1 + N 0 W P ) ,取等号,即 R = W log ( 1 + N 0 W P )
P m i n = N 0 W ( 2 R / W − 1 ) = 5 × 1 0 − 6 × 1 0 − 3 × 4 × 1 0 3 × ( 2 5.6 × 1 0 4 /4 × 1 0 3 − 1 ) = 0.32766 W
(2) W → ∞ 时,由实现无 差错传输则 R ≤ lim W → ∞ C = N 0 l n 2 P ,取等号,则
P m i n = R N 0 ln 2 = 5.6 × 104 × 5 × 106 × 103 × ln 2 = 1.941 × 104 = 0.1941 mW